Studies of longitudinal instabilities in the ALS

D. Bertwistle¹, S. Leeman¹, M. Venturini¹, D. Teytelman²

¹LBNL, Berkeley, CA, USA ²Dimtel, Inc., San Jose, CA, USA

May 28, 2025

Feedback

High Current

HOM at Full Current

Modal Scans

Summary

- Production fill pattern: 1–276, camshaft in 308;
- 4 ms off time, no excitation;
- Fast growth of low frequency modes (-1, 0, 1);
- Fast damping;
 - Three modes are strongly coupled, not true eigenmodes.

Feedback

High Current

HOM at Full Current

Modal Scans

- Production fill pattern: 1–276, camshaft in 308;
 - 4 ms off time, no excitation;
- Fast growth of low frequency modes (-1, 0, 1);
- Fast damping;
 - Three modes are strongly coupled, not true eigenmodes.

Feedback

High Current HOM at Full

Current

Modal Scans

- Production fill pattern: 1–276, camshaft in 308;
- 4 ms off time, no excitation;
- Fast growth of low frequency modes (-1, 0, 1);
- Fast damping;
- Three modes are strongly coupled, not true eigenmodes.

Feedback

High Current

HOM at Full Current

Modal Scans

- Production fill pattern: 1–276, camshaft in 308;
- 4 ms off time, no excitation;
- Fast growth of low frequency modes (-1, 0, 1);
- Fast damping;
- Three modes are strongly coupled, not true eigenmodes.

Feedback

High Current

HOM at Full Current

Modal Scans

Special fill pattern: 1–320;

- For this transient growth and damping rates are in line with those measured in May 2025;
- During that shift we observed big changes in low mode growth rates;
- Still see modes -1, 0, and 1;
- Growing modes seem to be phase locked, suggesting one underlying eigenmode;
- Needs more investigation, frequency of 4 kHz suggests mode 0 instability.

Feedback

High Current

HOM at Full Current

Modal Scans

- Special fill pattern: 1–320;
- For this transient growth and damping rates are in line with those measured in May 2025;
- During that shift we observed big changes in low mode growth rates;
- Still see modes -1, 0, and 1;
- Growing modes seem to be phase locked, suggesting one underlying eigenmode;
- Needs more investigation, frequency of 4 kHz suggests mode 0 instability.

Feedback

High Current

HOM at Full Current

Modal Scans

- Special fill pattern: 1–320;
- For this transient growth and damping rates are in line with those measured in May 2025;
- During that shift we observed big changes in low mode growth rates;
- Still see modes -1, 0, and 1;
- Growing modes seem to be phase locked, suggesting one underlying eigenmode;
- Needs more investigation, frequency of 4 kHz suggests mode 0 instability.

Feedback

High Current

HOM at Full Current

Modal Scans

- Special fill pattern: 1–320;
- For this transient growth and damping rates are in line with those measured in May 2025;
- During that shift we observed big changes in low mode growth rates;
- Still see modes -1, 0, and 1;
- Growing modes seem to be phase locked, suggesting one underlying eigenmode;
- Needs more investigation, frequency of 4 kHz suggests mode 0 instability.

Feedback

High Current

HOM at Full Current

Modal Scans

Time (ms)

-50

0.5

- Special fill pattern: 1–320;
- For this transient growth and damping rates are in line with those measured in May 2025;
- During that shift we observed big changes in low mode growth rates;
- Still see modes -1, 0, and 1;
- Growing modes seem to be phase locked, suggesting one underlying eigenmode;
- Needs more investigation, frequency of 4 kHz suggests mode 0 instability.

Feedback

High Current

HOM at Full Current

Modal Scans

- In order to measure mode 233 we apply excitation at 6.5 kHz below 95 × f_{rev};
- On trigger feedback and excitation are turned off and data acquisition starts;
- Filtered around 6.4 kHz, excludes low modes;
- Textbook clean fits;
- Histograms of 12 data sets.

Feedback

High Current

HOM at Full Current

Modal Scans

- In order to measure mode 233 we apply excitation at 6.5 kHz below 95 × f_{rev};
- On trigger feedback and excitation are turned off and data acquisition starts;
- Filtered around 6.4 kHz, excludes low modes;
- Textbook clean fits;
- Histograms of 12 data sets.

Feedback

High Current

HOM at Full Current

Modal Scans

- In order to measure mode 233 we apply excitation at 6.5 kHz below 95 × f_{rev};
- On trigger feedback and excitation are turned off and data acquisition starts;
- Filtered around 6.4 kHz, excludes low modes;
- Textbook clean fits;
- Histograms of 12 data sets.

Feedback

High Current

HOM at Full Current

Modal Scans

- In order to measure mode 233 we apply excitation at 6.5 kHz below 95 × f_{rev};
- On trigger feedback and excitation are turned off and data acquisition starts;
- Filtered around 6.4 kHz, excludes low modes;
- Textbook clean fits;
- Histograms of 12 data sets.

Feedback

High Current

HOM at Full Current

Modal Scans

- In order to measure mode 233 we apply excitation at 6.5 kHz below 95 × f_{rev};
- On trigger feedback and excitation are turned off and data acquisition starts;
- Filtered around 6.4 kHz, excludes low modes;
- Textbook clean fits;
- Histograms of 12 data sets.

Feedback

High Current

HOM at Full Current

Modal Scans

ALS:may1925/101227: Io= 46.0037mA, Dsamp= 1, ShifGain= 5, Noun= 328, At v: G1= 0, G2= 216.897, Ph1= 0, Ph2= 58.0526, Brkpt= 37458, Calib= 4.4784.

Uniform fill pattern at 40–50 mA;

Fully stable;

- One mode at a time is excited with sinusoidal drive, then open-loop damping transient is captured;
- Moving from mode 233 to 95 = 328 233;
- Damping transient is fitted to extract the complex eigenvalue;
- Mode 233 is anti-damped, mode 95 is damped relative to the radiation damping baseline.

Feedback

High Current HOM at Full

Current

Modal Scans

ALS:may1925/101227: Io=46.0037mA, Dsamp= 1, ShifGain= 5, Noun= 328, At v: G1= 0, G2= 216.897, Ph1= 0, Ph2= 58.0526, Brkpt= 37458, Calib= 4.4784.

- Uniform fill pattern at 40–50 mA;
- Fully stable;
- One mode at a time is excited with sinusoidal drive, then open-loop damping transient is captured;
- Moving from mode 233 to 95 = 328 233;
- Damping transient is fitted to extract the complex eigenvalue;
- Mode 233 is anti-damped, mode 95 is damped relative to the radiation damping baseline.

Feedback

High Current HOM at Full

Current

Modal Scans

ALS:may1925/101227: Io= 46.0037mA, Dsamp= 1, ShifGain= 5, Noun= 328, At v: G1= 0, G2= 216.897, Ph1= 0, Ph2= 58.0526, Brkpt= 37458, Calib= 4.4784.

- Uniform fill pattern at 40–50 mA;
- Fully stable;
- One mode at a time is excited with sinusoidal drive, then open-loop damping transient is captured;
- Moving from mode 233 to 95 = 328 233;
- Damping transient is fitted to extract the complex eigenvalue;
- Mode 233 is anti-damped, mode 95 is damped relative to the radiation damping baseline.

Feedback

High Current HOM at Full

Current

Modal Scans

ALS:may1925/101617: lo= 45.8259mA, Dsamp= 1, ShifGain= 5, Nbun= 328, At v: G1= 0, G2= 216.897, Ph1= 0, Ph2= 58.0526, Brkpt= 37458, Calib= 4.4784

- Uniform fill pattern at 40–50 mA;
- Fully stable;
- One mode at a time is excited with sinusoidal drive, then open-loop damping transient is captured;
- Moving from mode 233 to 95 = 328 233;
- Damping transient is fitted to extract the complex eigenvalue;
- Mode 233 is anti-damped, mode 95 is damped relative to the radiation damping baseline.

Feedback

High Current HOM at Full

Modal Scans

- Uniform fill pattern at 40–50 mA;
- Fully stable;
 - One mode at a time is excited with sinusoidal drive, then open-loop damping transient is captured;
- Moving from mode 233 to 95 = 328 233;
- Damping transient is fitted to extract the complex eigenvalue;
- Mode 233 is anti-damped, mode 95 is damped relative to the radiation damping baseline.

Feedback

High Current HOM at Full

Modal Scans

- Uniform fill pattern at 40–50 mA;
- Fully stable;
 - One mode at a time is excited with sinusoidal drive, then open-loop damping transient is captured;
- Moving from mode 233 to 95 = 328 233;
- Damping transient is fitted to extract the complex eigenvalue;
- Mode 233 is anti-damped, mode 95 is damped relative to the radiation damping baseline.

Feedback

Current HOM at Full

Modal Scans

Hiah

 12 ms transients with 1 ms before the trigger, 0.3 full-scale excitation;

- 327 modes, 4 measurements per mode, 15.5 minutes, 15 GiB.
- Automated analysis extracts modal signals, then fits to extract eigenvalues;
- All modal eigenvalues plotted, positive modes in blue, negative in red (mode -1 is 327 - h);
- A curious split between upper and lower sideband frequencies, to be explained shortly.

Current HOM at Full Current

Modal Scans

Hiah

- 12 ms transients with 1 ms before the trigger, 0.3 full-scale excitation;
- 327 modes, 4 measurements per mode, 15.5 minutes, 15 GiB.
- Automated analysis extracts modal signals, then fits to extract eigenvalues;
- All modal eigenvalues plotted, positive modes in blue, negative in red (mode -1 is 327 - h);
- A curious split between upper and lower sideband frequencies, to be explained shortly.

Current HOM at Full Current

Modal Scans

Hiah

- 12 ms transients with 1 ms before the trigger, 0.3 full-scale excitation;
- 327 modes, 4 measurements per mode, 15.5 minutes, 15 GiB.
- Automated analysis extracts modal signals, then fits to extract eigenvalues;
- All modal eigenvalues plotted, positive modes in blue, negative in red (mode -1 is 327 - h);
- A curious split between upper and lower sideband frequencies, to be explained shortly.

Feedback

Current HOM at Full Current

Modal Scans

Hiah

LFB; I₀ = 44.2878 mA; 19-May-2025 10:49:47

- 12 ms transients with 1 ms before the trigger, 0.3 full-scale excitation;
- 327 modes, 4 measurements per mode, 15.5 minutes, 15 GiB.
- Automated analysis extracts modal signals, then fits to extract eigenvalues;
- All modal eigenvalues plotted, positive modes in blue, negative in red (mode -1 is 327 - h);
- A curious split between upper and lower sideband frequencies, to be explained shortly.

Feedback

High Current HOM at Full Current

Modal Scans

LFB; I₀ = 44.2878 mA; 19-May-2025 10:49:47

- 12 ms transients with 1 ms before the trigger, 0.3 full-scale excitation;
- 327 modes, 4 measurements per mode, 15.5 minutes, 15 GiB.
- Automated analysis extracts modal signals, then fits to extract eigenvalues;
- All modal eigenvalues plotted, positive modes in blue, negative in red (mode -1 is 327 - h);
- A curious split between upper and lower sideband frequencies, to be explained shortly.

Feedback

Current HOM at Full Current

Modal Scans

Hiah

Fitting Animation

Feedback

High Current

HOM at Ful Current

Modal Scans

Summary

<ロト < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < < つ < < </p>

8420 (ZH) 8400 8380 Lower sideband 8360 8340 20 40 60 80 100 120 140 160 180 Mode number

From a single scan several clear features can be identified;

- Mode 233, HOMs at 2353 and 2853 MHz in the main RF cavities;
- Mode 154, unknown source, resonance between 153 and 154;
- ► Mode 1 harmonic cavities parked between $3 \times f_{rf}$ and $3 \times f_{rf} + f_{rev}$.

Feedback

High Current HOM at Full

Current

Modal Scans

- From a single scan several clear features can be identified;
- Mode 233, HOMs at 2353 and 2853 MHz in the main RF cavities;
- Mode 154, unknown source, resonance between 153 and 154;
- ► Mode 1 harmonic cavities parked between 3 × f_{rf} and 3 × f_{rf} + f_{rev}.

Feedback

High Current

HOM at Full Current

Modal Scans

- From a single scan several clear features can be identified;
- Mode 233, HOMs at 2353 and 2853 MHz in the main RF cavities;
- Mode 154, unknown source, resonance between 153 and 154;
- ► Mode 1 harmonic cavities parked between $3 \times f_{rf}$ and $3 \times f_{rf} + f_{rev}$.

Feedback

Current HOM at Full

Hiah

Current

Modal Scans

- From a single scan several clear features can be identified;
- Mode 233, HOMs at 2353 and 2853 MHz in the main RF cavities;
- Mode 154, unknown source, resonance between 153 and 154;
- ► Mode 1 harmonic cavities parked between $3 \times f_{rf}$ and $3 \times f_{rf} + f_{rev}$.

Feedback

High Current HOM at Full

Current

Modal Scans

Three scans at different cavity 2 temperatures;

- Large frequency shift, not really expected from the HOM;
- Selection of modes with little driving impedance shows frequency shift with current;
- Linear fit seems OK.

Feedback

High Current

HOM at Full Current

Modal Scans

- Three scans at different cavity 2 temperatures;
- Large frequency shift, not really expected from the HOM;
- Selection of modes with little driving impedance shows frequency shift with current;
- Linear fit seems OK.

Feedback

High Current

HOM at Full Current

Modal Scans

- Three scans at different cavity 2 temperatures;
- Large frequency shift, not really expected from the HOM;
- Selection of modes with little driving impedance shows frequency shift with current;

Linear fit seems OK.

Feedback

High Current

HOM at Full Current

Modal Scans

- Three scans at different cavity 2 temperatures;
- Large frequency shift, not really expected from the HOM;
- Selection of modes with little driving impedance shows frequency shift with current;
- Linear fit seems OK.

Feedback

High Current

HOM at Full Current

Modal Scans

 For a uniform fill in the ALS we expect 328 distinct modes, with 328 complex eigenvalues;

- ln zero current limit all eigenvalues tend to $-\lambda_{rad} + i\omega_s$;
- Beam interacts with constant impedances to shift relevant eigenvalues linearly with current, proportional to real and imaginary parts of the impedance;
- In addition, modes 1–327 shift in frequency due to the harmonic cavity voltage reducing the focusing;
- Mode 0 is special beam-induced fields in main and harmonic cavities follow mode 0 motion and produce no focusing or defocusing effect;
- Constant RF voltage in main cavities means that generator contribution drops with increasing beam current (larger beam-induced voltage), so focusing for mode 0 reduces with beam current, moving its frequency downwards;
- Robinson beam-loading limit is when mode 0 hits DC.

Feedback

High Current HOM at Full Current

Modal Scans

- For a uniform fill in the ALS we expect 328 distinct modes, with 328 complex eigenvalues;
- In zero current limit all eigenvalues tend to $-\lambda_{rad} + i\omega_s$;
- Beam interacts with constant impedances to shift relevant eigenvalues linearly with current, proportional to real and imaginary parts of the impedance;
- In addition, modes 1–327 shift in frequency due to the harmonic cavity voltage reducing the focusing;
- Mode 0 is special beam-induced fields in main and harmonic cavities follow mode 0 motion and produce no focusing or defocusing effect;
- Constant RF voltage in main cavities means that generator contribution drops with increasing beam current (larger beam-induced voltage), so focusing for mode 0 reduces with beam current, moving its frequency downwards;
- Robinson beam-loading limit is when mode 0 hits DC.

Feedback

High Current HOM at Full Current

Modal Scans

- For a uniform fill in the ALS we expect 328 distinct modes, with 328 complex eigenvalues;
- In zero current limit all eigenvalues tend to $-\lambda_{rad} + i\omega_s$;
- Beam interacts with constant impedances to shift relevant eigenvalues linearly with current, proportional to real and imaginary parts of the impedance;
- In addition, modes 1–327 shift in frequency due to the harmonic cavity voltage reducing the focusing;
- Mode 0 is special beam-induced fields in main and harmonic cavities follow mode 0 motion and produce no focusing or defocusing effect;
- Constant RF voltage in main cavities means that generator contribution drops with increasing beam current (larger beam-induced voltage), so focusing for mode 0 reduces with beam current, moving its frequency downwards;
- Robinson beam-loading limit is when mode 0 hits DC.

Feedback

Current HOM at Full Current

Modal Scans

Hiah

- For a uniform fill in the ALS we expect 328 distinct modes, with 328 complex eigenvalues;
- In zero current limit all eigenvalues tend to $-\lambda_{rad} + i\omega_s$;
- Beam interacts with constant impedances to shift relevant eigenvalues linearly with current, proportional to real and imaginary parts of the impedance;
- In addition, modes 1–327 shift in frequency due to the harmonic cavity voltage reducing the focusing;
- Mode 0 is special beam-induced fields in main and harmonic cavities follow mode 0 motion and produce no focusing or defocusing effect;
- Constant RF voltage in main cavities means that generator contribution drops with increasing beam current (larger beam-induced voltage), so focusing for mode 0 reduces with beam current, moving its frequency downwards;
- Robinson beam-loading limit is when mode 0 hits DC.

Feedback

High Current HOM at Full Current

Modal Scans

- For a uniform fill in the ALS we expect 328 distinct modes, with 328 complex eigenvalues;
- In zero current limit all eigenvalues tend to $-\lambda_{rad} + i\omega_s$;
- Beam interacts with constant impedances to shift relevant eigenvalues linearly with current, proportional to real and imaginary parts of the impedance;
- In addition, modes 1–327 shift in frequency due to the harmonic cavity voltage reducing the focusing;
- Mode 0 is special beam-induced fields in main and harmonic cavities follow mode 0 motion and produce no focusing or defocusing effect;
- Constant RF voltage in main cavities means that generator contribution drops with increasing beam current (larger beam-induced voltage), so focusing for mode 0 reduces with beam current, moving its frequency downwards;
- Robinson beam-loading limit is when mode 0 hits DC.

Feedback

High Current HOM at Full Current

Modal Scans

- For a uniform fill in the ALS we expect 328 distinct modes, with 328 complex eigenvalues;
- In zero current limit all eigenvalues tend to $-\lambda_{rad} + i\omega_s$;
- Beam interacts with constant impedances to shift relevant eigenvalues linearly with current, proportional to real and imaginary parts of the impedance;
- In addition, modes 1–327 shift in frequency due to the harmonic cavity voltage reducing the focusing;
- Mode 0 is special beam-induced fields in main and harmonic cavities follow mode 0 motion and produce no focusing or defocusing effect;
- Constant RF voltage in main cavities means that generator contribution drops with increasing beam current (larger beam-induced voltage), so focusing for mode 0 reduces with beam current, moving its frequency downwards;
- Robinson beam-loading limit is when mode 0 hits DC.

Feedback

Current HOM at Full Current

Modal Scans

Hiah

- For a uniform fill in the ALS we expect 328 distinct modes, with 328 complex eigenvalues;
- In zero current limit all eigenvalues tend to $-\lambda_{rad} + i\omega_s$;
- Beam interacts with constant impedances to shift relevant eigenvalues linearly with current, proportional to real and imaginary parts of the impedance;
- In addition, modes 1–327 shift in frequency due to the harmonic cavity voltage reducing the focusing;
- Mode 0 is special beam-induced fields in main and harmonic cavities follow mode 0 motion and produce no focusing or defocusing effect;
- Constant RF voltage in main cavities means that generator contribution drops with increasing beam current (larger beam-induced voltage), so focusing for mode 0 reduces with beam current, moving its frequency downwards;
- Robinson beam-loading limit is when mode 0 hits DC.

Feedback

High Current HOM at Full Current

Modal Scans

- Use archiver data to obtain beam current for each measurement (should capture that directly next time);
- For the imaginary part use the linear fit to the 5 modes shown earlier;
- Correct to 50 mA as $f_n^* = (f_n f_s(I_0))\frac{50}{I_0} + f_s(50);$
- For the real part, use radiation damping estimate from modes 163–165 (-194.6s⁻¹);

$$\triangleright \ \lambda^* = \lambda_{\rm rad} + (\lambda - \lambda_{\rm rad}) \frac{50}{l_0}.$$

Feedback

High Current

HOM at Full Current

Modal Scans

Summary

- Use archiver data to obtain beam current for each measurement (should capture that directly next time);
- For the imaginary part use the linear fit to the 5 modes shown earlier;
- Correct to 50 mA as $f_n^* = (f_n f_s(I_0))\frac{50}{I_0} + f_s(50);$
- For the real part, use radiation damping estimate from modes 163–165 (-194.6s⁻¹);

$$\triangleright \ \lambda^* = \lambda_{\rm rad} + (\lambda - \lambda_{\rm rad}) \frac{50}{l_0}.$$

Feedback

High Current

HOM at Full Current

Modal Scans

Summary

 $\triangleright \lambda^* = \lambda_{\text{rad}} + (\lambda - \lambda_{\text{rad}})\frac{50}{L}.$

- Use archiver data to obtain beam current for each measurement (should capture that directly next time);
- For the imaginary part use the linear fit to the 5 modes shown earlier;
- Correct to 50 mA as $f_n^* = (f_n f_s(I_0))\frac{50}{I_0} + f_s(50);$
- For the real part, use radiation damping estimate from modes 163–165 (-194.6s⁻¹);

Feedbac

Current

HOM at Full Current

Modal Scans

Summary

- Use archiver data to obtain beam current for each measurement (should capture that directly next time);
- For the imaginary part use the linear fit to the 5 modes shown earlier;
- Correct to 50 mA as $f_n^* = (f_n f_s(I_0))\frac{50}{I_0} + f_s(50);$
- For the real part, use radiation damping estimate from modes 163–165 (-194.6s⁻¹);

$$\triangleright \ \lambda^* = \lambda_{\rm rad} + (\lambda - \lambda_{\rm rad}) \frac{50}{l_0}.$$

Feedback

High Current

HOM at Full Current

Modal Scans

Summary

Scans With Current Calibration

Original scan;

- Current calibrated out;
- Cavity 2 temperature scan.

Feedback

High Current

HOM at Ful Current

Modal Scans

Scans With Current Calibration

- Original scan;
- Current calibrated out;
- Cavity 2 temperature scan.

Feedback

High Current

HOM at Ful Current

Modal Scans

Scans With Current Calibration

- Original scan;
- Current calibrated out;
- Cavity 2 temperature scan.

Feedback

High Current

HOM at Full Current

Modal Scans

Summary

Work needed to plan the actual measurement;

- Cavity temperature setting and settling problems;
- Ideally perform all measurements with one fill;
- Can increase the current somewhat (double);
- Explore fitting resonances from multiple modes (232–235, 94–96) without temperature scans.

Feedback

High Current

HOM at Full Current

Modal Scans

- Work needed to plan the actual measurement;
- Cavity temperature setting and settling problems;
- Ideally perform all measurements with one fill;
- Can increase the current somewhat (double);
- Explore fitting resonances from multiple modes (232–235, 94–96) without temperature scans.

High Current

HOM at Full Current

Modal Scans

- Work needed to plan the actual measurement;
- Cavity temperature setting and settling problems;
- Ideally perform all measurements with one fill;
- Can increase the current somewhat (double);
- Explore fitting resonances from multiple modes (232–235, 94–96) without temperature scans.

High Current

HOM at Full Current

Modal Scans

- Work needed to plan the actual measurement;
- Cavity temperature setting and settling problems;
- Ideally perform all measurements with one fill;
- Can increase the current somewhat (double);
- Explore fitting resonances from multiple modes (232–235, 94–96) without temperature scans.

High Current

HOM at Full Current

Modal Scans

- Work needed to plan the actual measurement;
- Cavity temperature setting and settling problems;
- Ideally perform all measurements with one fill;
- Can increase the current somewhat (double);
- Explore fitting resonances from multiple modes (232–235, 94–96) without temperature scans.

High Current

HOM at Full Current

Modal Scans