Bunch-by-bunch Feedback and Diagnostics PLS-II

Dmitry Teytelman

Dimtel, Inc., San Jose, CA, USA

September 25, 2024

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

Summary

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆□ ▶

Outline

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback

Overview Technology

PLS-II Demonstration

Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

Feedback

Introduction

Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

Summary

・ロト・国ト・ヨト ヨー うへの

Outline

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback

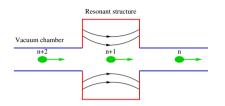
Overview Technology

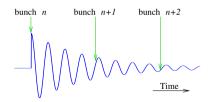
PLS-II Demonstration

Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

Feedback

Introduction


Coupled-bunch Instabilities


Bunch-by-bunch Feedback Overview Technology

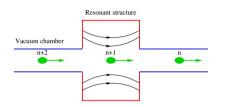
PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

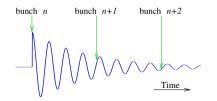
Summary

・ロト・国ト・ヨト ヨー うへの

- Bunch passing through a resonant structure excites a wakefield which is sampled by the following bunches — a coupling mechanism;
- In practice the wakefields have much longer damping times than illustrated here;
- ► Longitudinal bunch oscillation → phase modulation of the wakefield → slope of the wake voltage sampled by the following bunches determines the coupling.
- For certain combinations of wakefield amplitudes and frequencies the overall system becomes unstable.

▲□▶▲□▶▲글▶▲글▶ 글 りゅつ


Feedback


Introduction

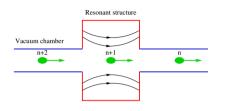
Coupled-bunch Instabilities

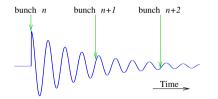
Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

- Bunch passing through a resonant structure excites a wakefield which is sampled by the following bunches — a coupling mechanism;
- In practice the wakefields have much longer damping times than illustrated here;
- ► Longitudinal bunch oscillation → phase modulation of the wakefield → slope of the wake voltage sampled by the following bunches determines the coupling.
- For certain combinations of wakefield amplitudes and frequencies the overall system becomes unstable.

▲□▶▲□▶▲글▶▲글▶ 글 りゅつ


Feedback


Introduction

Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

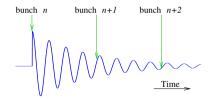
PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

- Bunch passing through a resonant structure excites a wakefield which is sampled by the following bunches — a coupling mechanism;
- In practice the wakefields have much longer damping times than illustrated here;
 - Longitudinal bunch oscillation → phase modulation of the wakefield → slope of the wake voltage sampled by the following bunches determines the coupling.
- For certain combinations of wakefield amplitudes and frequencies the overall system becomes unstable.

Feedback

Introduction

Coupled-bunch Instabilities


Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

Summary

・ロト・日本・モート モー うくぐ

- Bunch passing through a resonant structure excites a wakefield which is sampled by the following bunches — a coupling mechanism;
- In practice the wakefields have much longer damping times than illustrated here;
 - Longitudinal bunch oscillation → phase modulation of the wakefield → slope of the wake voltage sampled by the following bunches determines the coupling.
- For certain combinations of wakefield amplitudes and frequencies the overall system becomes unstable.

Feedback

Introduction

Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

- A system of N bunches (coupled harmonic oscillators) has N eigenmodes;
- From symmetry considerations we find that the eigenmodes correspond to Fourier vectors;
- Mode number *m* describes the number of oscillation periods over one turn;
- Wakefields affect the modal eigenvalues in both real (growth rate) and imaginary (oscillation frequency) parts;
- Motion of bunch k oscillating in mode m is given by: $A_m e^{i2\pi km/N} e^{\Lambda_m t}$
 - ► A_m modal amplitude;
 - \blacktriangleright Λ_m complex modal eigenvalue.

Feedback

Introduction

Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

Summary

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

- A system of N bunches (coupled harmonic oscillators) has N eigenmodes;
- From symmetry considerations we find that the eigenmodes correspond to Fourier vectors;
- Mode number *m* describes the number of oscillation periods over one turn;
- Wakefields affect the modal eigenvalues in both real (growth rate) and imaginary (oscillation frequency) parts;
- Motion of bunch k oscillating in mode m is given by: $A_m e^{i2\pi km/N} e^{\Lambda_m t}$
 - ► A_m modal amplitude;
 - \blacktriangleright Λ_m complex modal eigenvalue.

Feedback

Introduction

Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

Summary

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

- A system of N bunches (coupled harmonic oscillators) has N eigenmodes;
- From symmetry considerations we find that the eigenmodes correspond to Fourier vectors;
- Mode number *m* describes the number of oscillation periods over one turn;
- Wakefields affect the modal eigenvalues in both real (growth rate) and imaginary (oscillation frequency) parts;
- Motion of bunch k oscillating in mode m is given by: $A_m e^{i2\pi km/N} e^{\Lambda_m t}$
 - ► *A_m* modal amplitude;
 - \blacktriangleright Λ_m complex modal eigenvalue.

Feedback

Introduction

Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

- A system of N bunches (coupled harmonic oscillators) has N eigenmodes;
- From symmetry considerations we find that the eigenmodes correspond to Fourier vectors;
- Mode number *m* describes the number of oscillation periods over one turn;
- Wakefields affect the modal eigenvalues in both real (growth rate) and imaginary (oscillation frequency) parts;
- Motion of bunch k oscillating in mode m is given by: $A_m e^{i2\pi km/N} e^{\Lambda_m t}$
 - ► *A_m* modal amplitude;
 - \triangleright Λ_m complex modal eigenvalue.

Feedback

Introduction

Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

Summary

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- A system of N bunches (coupled harmonic oscillators) has N eigenmodes;
- From symmetry considerations we find that the eigenmodes correspond to Fourier vectors;
- Mode number *m* describes the number of oscillation periods over one turn;
- Wakefields affect the modal eigenvalues in both real (growth rate) and imaginary (oscillation frequency) parts;
- Motion of bunch k oscillating in mode m is given by: $A_m e^{i2\pi km/N} e^{\Lambda_m t}$
 - \blacktriangleright A_m modal amplitude;
 - \blacktriangleright Λ_m complex modal eigenvalue.

Introduction

Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

Modal Oscillation Example

- Harmonic number of 8;
- Top plot mode 1;
- Bottom mode 7;
- All bunches oscillate at the same amplitude and frequency, but different phases;
- Cannot distinguish modes m and N – m (or –m) from a single turn snapshot.

Feedback

Introduction

Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

Modal Oscillation With Damping

Same modes with damping.

Feedback

Introduction

Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

Summary

・ロト・(四)・(日)・(日)・(日)・

Beam interacts with wakefields (impedances in frequency domain) at synchrotron or betatron sidebands of revolution harmonics;

Impedance functions are aliased, since they are sampled by the beam;

- Longitudinal: $\Lambda_m = (-\lambda_{\text{rad}}^{\parallel} + i\omega_s) + \frac{\pi \alpha \Theta_{\text{rf}}^{e_f} I_0}{E_0 h\omega_s} Z^{\parallel \text{eff}}(m\omega_0 + \omega_s);$
- Effective impedance: $Z^{\parallel \text{eff}}(\omega) = \sum_{p=-\infty}^{\infty} \frac{p\omega_{\text{rf}}+\omega}{\omega_{\text{rf}}} Z^{\parallel}(p\omega_{\text{rf}}+\omega)$
- ► Transverse: $\Lambda_m = (-\lambda_{\text{rad}}^{\perp} + i\omega_{\beta}) \frac{cef_{\text{rev}}b_0}{2\omega_{\beta}E_0}Z^{\perp \text{eff}}(m\omega_0 + \omega_{\beta})$
- Effective impedance: $Z^{\perp eff}(\omega) = \sum_{p=-\infty}^{\infty} Z^{\perp}(p\omega_{rf} + \omega)$

Feedback

Introduction

Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

- Beam interacts with wakefields (impedances in frequency domain) at synchrotron or betatron sidebands of revolution harmonics;
- Impedance functions are aliased, since they are sampled by the beam;
- Longitudinal: $\Lambda_m = (-\lambda_{\text{rad}}^{\parallel} + i\omega_s) + \frac{\pi \alpha e f_{\text{rf}}^2 I_0}{E_0 \hbar \omega_s} Z^{\parallel \text{eff}}(m\omega_0 + \omega_s);$
- Effective impedance: $Z^{\parallel \text{eff}}(\omega) = \sum_{p=-\infty}^{\infty} \frac{p\omega_{\text{rf}} + \omega}{\omega_{\text{rf}}} Z^{\parallel}(p\omega_{\text{rf}} + \omega)$
- ► Transverse: $\Lambda_m = (-\lambda_{\text{rad}}^{\perp} + i\omega_{\beta}) \frac{cef_{\text{rev}}l_0}{2\omega_{\beta}E_0}Z^{\perp \text{eff}}(m\omega_0 + \omega_{\beta})$
- Effective impedance: $Z^{\perp eff}(\omega) = \sum_{p=-\infty}^{\infty} Z^{\perp}(p\omega_{rf} + \omega)$

Feedback

Introduction

Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

- Beam interacts with wakefields (impedances in frequency domain) at synchrotron or betatron sidebands of revolution harmonics;
- Impedance functions are aliased, since they are sampled by the beam;

• Longitudinal:
$$\Lambda_m = (-\lambda_{\text{rad}}^{\parallel} + i\omega_s) + \frac{\pi \alpha e f_{\text{rf}}^{\epsilon} h_0}{E_0 \hbar \omega_s} Z^{\parallel \text{eff}}(m\omega_0 + \omega_s);$$

- Effective impedance: $Z^{\parallel \text{eff}}(\omega) = \sum_{p=-\infty}^{\infty} \frac{p\omega_{\text{rf}}+\omega}{\omega_{\text{rf}}} Z^{\parallel}(p\omega_{\text{rf}}+\omega)$
- ► Transverse: $\Lambda_m = (-\lambda_{rad}^{\perp} + i\omega_{\beta}) \frac{cef_{rev} I_0}{2\omega_{\beta}E_0} Z^{\perp eff}(m\omega_0 + \omega_{\beta})$

• Effective impedance: $Z^{\perp eff}(\omega) = \sum_{p=-\infty}^{\infty} Z^{\perp}(p\omega_{rf} + \omega)$

Feedback

Introduction

Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

- Beam interacts with wakefields (impedances in frequency domain) at synchrotron or betatron sidebands of revolution harmonics;
- Impedance functions are aliased, since they are sampled by the beam;
- Longitudinal: $\Lambda_m = (-\lambda_{\text{rad}}^{\parallel} + i\omega_s) + \frac{\pi \alpha e t_{\text{rf}}^{\ell} h_0}{E_0 \hbar \omega_s} Z^{\parallel \text{eff}}(m\omega_0 + \omega_s);$
- Effective impedance: $Z^{\parallel \text{eff}}(\omega) = \sum_{p=-\infty}^{\infty} \frac{p\omega_{\text{rf}}+\omega}{\omega_{\text{rf}}} Z^{\parallel}(p\omega_{\text{rf}}+\omega)$
- ► Transverse: $\Lambda_m = (-\lambda_{\rm rad}^{\perp} + i\omega_{\beta}) \frac{cef_{\rm rev} I_0}{2\omega_{\beta}E_0} Z^{\perp \rm eff}(m\omega_0 + \omega_{\beta})$
- Effective impedance: $Z^{\perp eff}(\omega) = \sum_{p=-\infty}^{\infty} Z^{\perp}(p\omega_{rf} + \omega)$

Feedback

Introduction

Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

Outline

ntroduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration

Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback

Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

Summary

・ロト・国ト・ヨト ヨー うへの

Outline

ntroduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview

PLS-II Demonstration

Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

Feedback

Introduction Coupled-bunch Instabilities

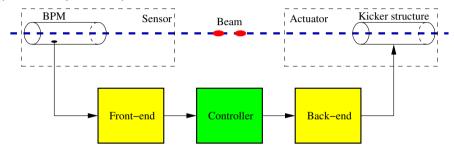
Bunch-by-bunch Feedback

Overview

Technology

PLS-II Demonstration Activities Comparison With SPring-8

Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning


Summary

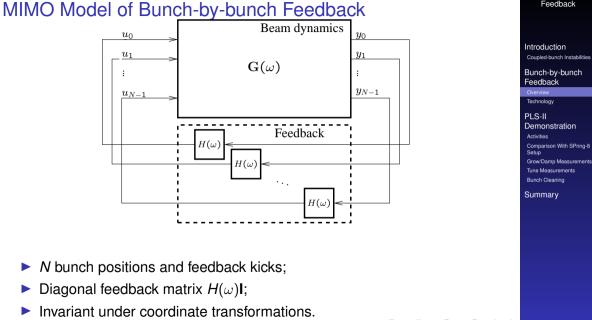
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Bunch-by-bunch Feedback

Definition

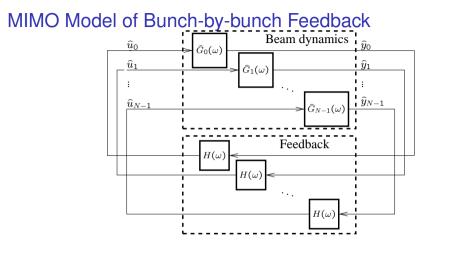
In bunch-by-bunch feedback approach the actuator signal for a given bunch depends only on the past motion of that bunch.

- Bunches are processed sequentially;
- Correction kicks are applied one or more turns later;
- Diagonal feedback computationally efficient;
- Extremely popular in storage rings why?


Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback


Overview

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

▲□▶▲□▶▲글▶▲글▶ 글 りゅつ

Feedback

- Coordinate transformation to eigenmode basis;
- N feedback loops one per mode;
- Identical feedback applied to each mode.

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback

Overview

Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

Summary

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Outline

ntroduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback

Overview Technology

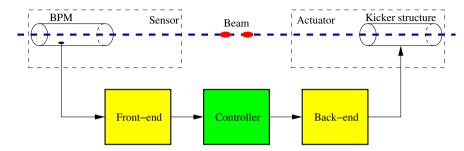
PLS-II Demonstration

Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback


Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

Summary

・ロト・国ト・ヨト ヨー うへの

Bunch-by-bunch Feedback

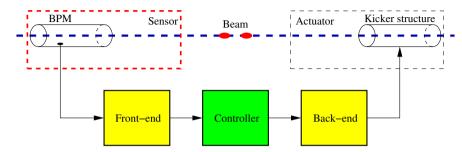
Sensor (pickup);

- Analog front-end;
- Controller;
- Analog back-end;
- Actuator (kicker).

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback


Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

Summary

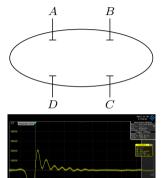
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Bunch-by-bunch Feedback

- Sensor (pickup);
- Analog front-end;
- Controller;
- Analog back-end;
- Actuator (kicker).

Feedback

Introduction Coupled-bunch Instabilities


Bunch-by-bunch Feedback

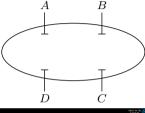
Technology

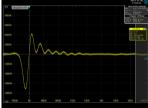
PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

Summary

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

- To sense beam position we typically use capacitive button beam position monitors (BPMs);
- Buttons couple capacitively to the beam, differentiating bunch current shape;
- BPM signals are wideband differentiated pulses with 100–400 ps duration;
- Differentiation means sensor gain increases with frequency.


Feedback

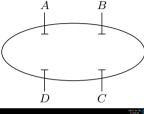

Introduction Coupled-bunch Instabilities

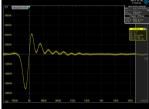
Bunch-by-bunch Feedback

Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

- To sense beam position we typically use capacitive button beam position monitors (BPMs);
- Buttons couple capacitively to the beam, differentiating bunch current shape;
- BPM signals are wideband differentiated pulses with 100–400 ps duration;
- Differentiation means sensor gain increases with frequency.


Feedback

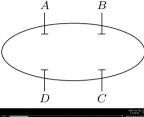

Introduction Coupled-bunch Instabilities

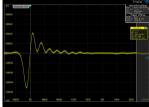
Bunch-by-bunch Feedback

Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

- To sense beam position we typically use capacitive button beam position monitors (BPMs);
- Buttons couple capacitively to the beam, differentiating bunch current shape;
- BPM signals are wideband differentiated pulses with 100–400 ps duration;
- Differentiation means sensor gain increases with frequency.


Feedback


Introduction Coupled-bunch Instabilities

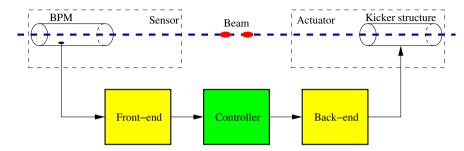
Bunch-by-bunch Feedback

Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

- To sense beam position we typically use capacitive button beam position monitors (BPMs);
- Buttons couple capacitively to the beam, differentiating bunch current shape;
- BPM signals are wideband differentiated pulses with 100–400 ps duration;
- Differentiation means sensor gain increases with frequency.

Feedback


Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback

Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

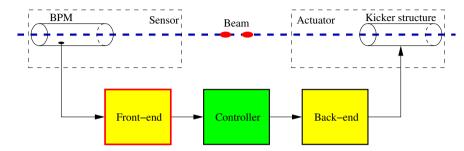
Bunch-by-bunch Feedback

- Sensor (pickup);
- Analog front-end;
- Controller;
- Analog back-end;
- Actuator (kicker).

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback


Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

Summary

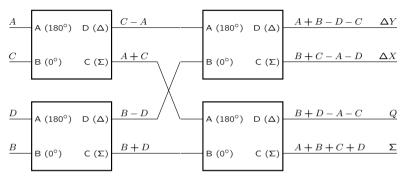
▲□▶▲□▶▲□▶▲□▶ □ ● ●

Bunch-by-bunch Feedback

- Sensor (pickup);
- Analog front-end;
- Controller;
- Analog back-end;
- Actuator (kicker).

Feedback

Introduction Coupled-bunch Instabilities


Bunch-by-bunch Feedback

Technology

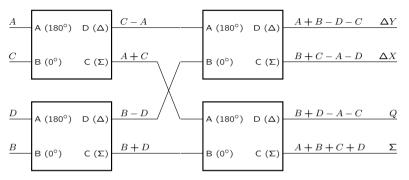
PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

Summary

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQで

First stage of BPM signal processing — separating X/Y/Z signals;

Since we are digitizing in the end, why not digitize raw signals?


For X and Y we are dealing with small differences of large signals;

If we can reject the common-mode at 20–30 dB level, that is also the gain of low-noise amplifier we can use to improve sensitivity. Introduction Coupled-bunch Instabilities Bunch-by-bunch

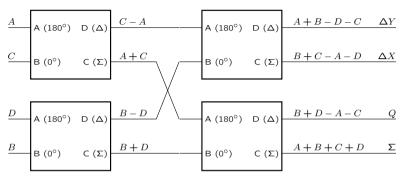
Feedback

Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

First stage of BPM signal processing — separating X/Y/Z signals;

- Since we are digitizing in the end, why not digitize raw signals?
- For X and Y we are dealing with small differences of large signals;
- If we can reject the common-mode at 20–30 dB level, that is also the gain of low-noise amplifier we can use to improve sensitivity.


Feedback

Introduction Coupled-bunch Instabilities

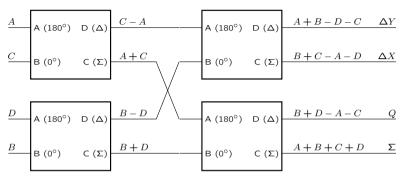
Bunch-by-bunch Feedback Overview

Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

First stage of BPM signal processing — separating X/Y/Z signals;

- Since we are digitizing in the end, why not digitize raw signals?
- For X and Y we are dealing with small differences of large signals;
- If we can reject the common-mode at 20–30 dB level, that is also the gain of low-noise amplifier we can use to improve sensitivity.

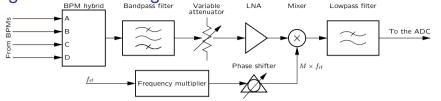

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview

Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning


- First stage of BPM signal processing separating X/Y/Z signals;
- Since we are digitizing in the end, why not digitize raw signals?
- For X and Y we are dealing with small differences of large signals;
- If we can reject the common-mode at 20–30 dB level, that is also the gain of low-noise amplifier we can use to improve sensitivity.

Introduction Coupled-bunch Instabilities Bunch-by-bunch Feedback

Overview

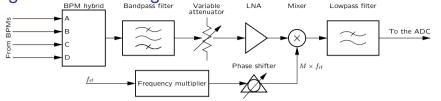
PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

Analog Front-end Design

Front-end requirements:

- Low amplitude and phase noise;
- Wideband to ensure high isolation between neighboring bunches.
- Input bandpass filter is an analog FIR filter that replicates BPM pulse with spacing, matched to detection LO period;
- Detection frequency choice:
 - High frequencies for sensitivity;
 - Must stay below the propagation cut-off frequency of the vacuum chamber.
- Local oscillator adjusted for amplitude (transverse) or phase (longitudinal) detection.

Feedback


Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback

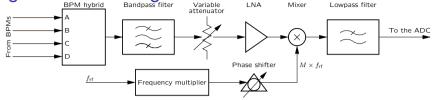
Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

Analog Front-end Design

- Front-end requirements:
 - Low amplitude and phase noise;
 - Wideband to ensure high isolation between neighboring bunches.
- Input bandpass filter is an analog FIR filter that replicates BPM pulse with spacing, matched to detection LO period;
- Detection frequency choice:
 - High frequencies for sensitivity;
 - Must stay below the propagation cut-off frequency of the vacuum chamber.
- Local oscillator adjusted for amplitude (transverse) or phase (longitudinal) detection.

Feedback


Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback

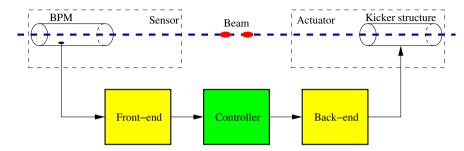
Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

Analog Front-end Design

- Front-end requirements:
 - Low amplitude and phase noise;
 - Wideband to ensure high isolation between neighboring bunches.
- Input bandpass filter is an analog FIR filter that replicates BPM pulse with spacing, matched to detection LO period;
- Detection frequency choice:
 - High frequencies for sensitivity;
 - Must stay below the propagation cut-off frequency of the vacuum chamber.
- Local oscillator adjusted for amplitude (transverse) or phase (longitudinal) detection.

Feedback


Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback

Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

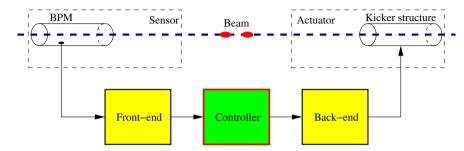
Bunch-by-bunch Feedback

- Sensor (pickup);
- Analog front-end;
- Controller;
- Analog back-end;
- Actuator (kicker).

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback


Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

Summary

▲□▶▲□▶▲□▶▲□▶ □ ● ●

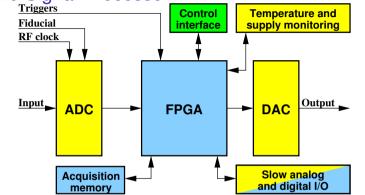
Bunch-by-bunch Feedback

- Sensor (pickup);
- Analog front-end;
- Controller;
- Analog back-end;
- Actuator (kicker).

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback


Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

Summary

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

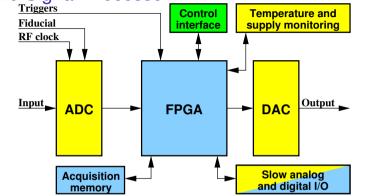
Baseband Signal Processor

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback

Technology


PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

Summary

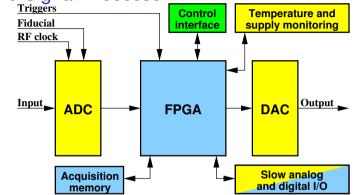
 Block diagram of a type frequently seen in accelerator context: ADC, FPGA, and DAC;

- ADC, DAC: 12–14 bit, 500–600 megasamples per second, 400 ps rise/fall times;
- FPGA implements algorithmically simple, but computationally intensive processing.

Baseband Signal Processor

Feedback

Introduction Coupled-bunch Instabilities


Bunch-by-bunch Feedback _{Overview}

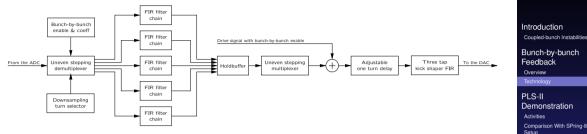
Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

- Block diagram of a type frequently seen in accelerator context: ADC, FPGA, and DAC;
- ADC, DAC: 12–14 bit, 500–600 megasamples per second, 400 ps rise/fall times;
- FPGA implements algorithmically simple, but computationally intensive processing.

Baseband Signal Processor

Feedback

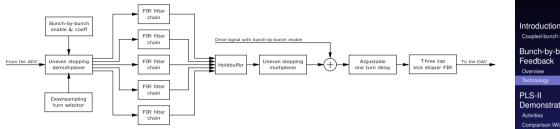

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview

PLS-II Demonstration Activities Comparison With SPring-8 Setun Grow/Damp Measurements Tune Measurements **Bunch Cleaning**

- Block diagram of a type frequently seen in accelerator context: ADC, FPGA. and DAC:
- ADC, DAC: 12–14 bit, 500–600 megasamples per second, 400 ps rise/fall times:
- FPGA implements algorithmically simple, but computationally intensive processing.

Inside the FPGA


- Multiple filter chains to match FPGA processing rate to the bunch crossing rate;
- Uneven stepping scheme use groups of n and n + 1 bunches to make sure signal from a given bunch ends up in the same filter chain on consecutive turns;
- Bunch-by-bunch excitation and feedback enables;
- Back-end compensation.

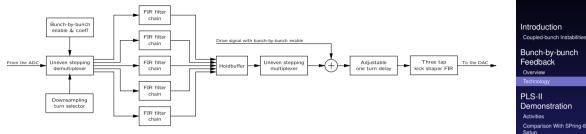
Feedbac

Grow/Damp Measurements

Bunch Cleaning

Inside the FPGA

- Multiple filter chains to match FPGA processing rate to the bunch crossing rate:
- Uneven stepping scheme use groups of *n* and n + 1 bunches to make sure signal from a given bunch ends up in the same filter chain on consecutive turns:

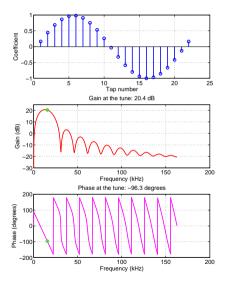

Feedback

Coupled-bunch Instabilities

Bunch-by-bunch Feedback

PLS-II Demonstration Activities Comparison With SPring-8 Setun Grow/Damp Measurements Tune Measurements **Bunch Cleaning**

Inside the FPGA


- Multiple filter chains to match FPGA processing rate to the bunch crossing rate;
- Uneven stepping scheme use groups of n and n + 1 bunches to make sure signal from a given bunch ends up in the same filter chain on consecutive turns;
- Bunch-by-bunch excitation and feedback enables;
- Back-end compensation.

Feedback

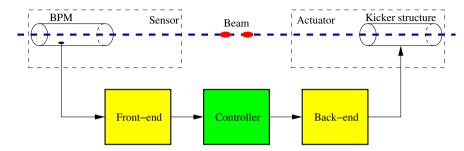
Grow/Damp Measurements

Bunch Cleaning

Feedback Filter

- Requirements:
 - Adjustable phase shift at the tune frequency;
 - DC rejection to get rid of constant orbit offsets;
 - Low group delay.
- Filter design approach sample one period of a sine wave;
 - Group delay is $\frac{1}{2}$ of oscillation period;
 - Nicely parameterized, often close to optimal.
- More sophisticated design methods are required when large perturbations are present or with variable beam dynamics, etc.

Feedback


Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback

Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

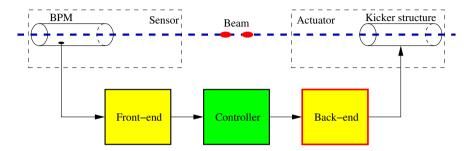
Bunch-by-bunch Feedback

- Sensor (pickup);
- Analog front-end;
- Controller;
- Analog back-end;
- Actuator (kicker).

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback


Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

Summary

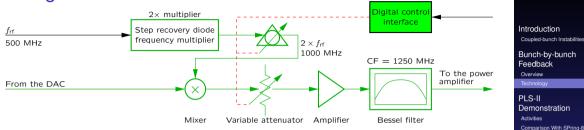
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Bunch-by-bunch Feedback

- Sensor (pickup);
- Analog front-end;
- Controller;
- Analog back-end;
- Actuator (kicker).

Feedback

Introduction Coupled-bunch Instabilities

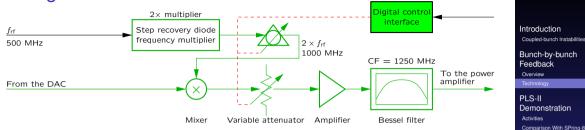

Bunch-by-bunch Feedback

Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

Summary

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

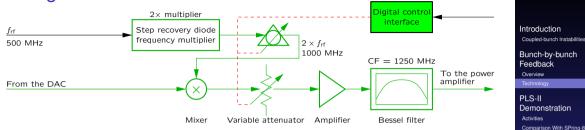


Feedback

Setup Grow/Damp Measurements

Bunch Cleaning

- Longitudinal kickers are usually built as highly damped (low Q, wideband) cavities at 1–1.5 GHz;
- Baseband kick must be upconverted to the right frequency to drive these;
- Phase linearity is critical to maintain the same feedback for different modes;
- Constant group-delay filters are used to create single-sideband modulation to efficiently drive kicker cavity.

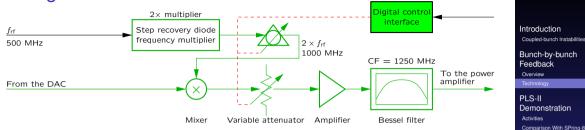


Feedback

Setup Grow/Damp Measurements

Bunch Cleaning

- Longitudinal kickers are usually built as highly damped (low Q, wideband) cavities at 1–1.5 GHz;
- Baseband kick must be upconverted to the right frequency to drive these;
- Phase linearity is critical to maintain the same feedback for different modes;
- Constant group-delay filters are used to create single-sideband modulation to efficiently drive kicker cavity.

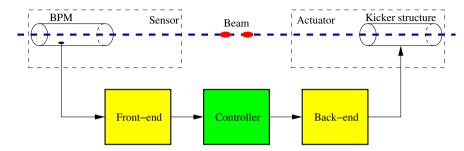


Feedback

Setup Grow/Damp Measurements

Bunch Cleaning

- Longitudinal kickers are usually built as highly damped (low Q, wideband) cavities at 1–1.5 GHz;
- Baseband kick must be upconverted to the right frequency to drive these;
- Phase linearity is critical to maintain the same feedback for different modes;
- Constant group-delay filters are used to create single-sideband modulation to efficiently drive kicker cavity.


Feedback

Setup Grow/Damp Measurements

Bunch Cleaning

- Longitudinal kickers are usually built as highly damped (low Q, wideband) cavities at 1–1.5 GHz;
- Baseband kick must be upconverted to the right frequency to drive these;
- Phase linearity is critical to maintain the same feedback for different modes;
- Constant group-delay filters are used to create single-sideband modulation to efficiently drive kicker cavity.

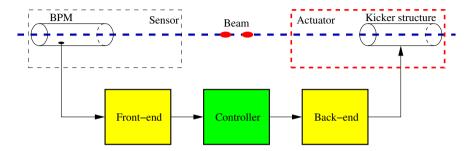
Bunch-by-bunch Feedback

- Sensor (pickup);
- Analog front-end;
- Controller;
- Analog back-end;
- Actuator (kicker).

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback


Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

Summary

▲□▶▲□▶▲□▶▲□▶ □ ● ●

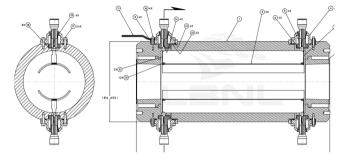
Bunch-by-bunch Feedback

- Sensor (pickup);
- Analog front-end;
- Controller;
- Analog back-end;
- Actuator (kicker).

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback


Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

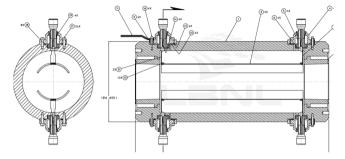
Summary

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Transverse Kicker

- 50 Ω striplines driven differentially;
- Counter-propagating beam and kick signals;
- For 2 ns bunch spacing maximum stripline length is 1 ns:
 - Fill time of 1 ns;
 - Beam propagation time of 1 ns;
 - Longer striplines will couple the kick to neighboring bunches.
- Shorter striplines better isolation, have smaller kick.

Feedback


Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback

Technology

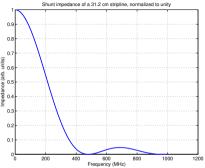
PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

Transverse Kicker

- 50 Ω striplines driven differentially;
- Counter-propagating beam and kick signals;
- For 2 ns bunch spacing maximum stripline length is 1 ns:
 - Fill time of 1 ns;
 - Beam propagation time of 1 ns;
 - Longer striplines will couple the kick to neighboring bunches.

Shorter striplines — better isolation, have smaller kick.

Feedback


Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback

Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

Transverse Kicker

- 50 Ω striplines driven differentially;
- Counter-propagating beam and kick signals;
- For 2 ns bunch spacing maximum stripline length is 1 ns:
 - Fill time of 1 ns;
 - Beam propagation time of 1 ns;
 - Longer striplines will couple the kick to neighboring bunches.
- Shorter striplines better isolation, have smaller kick.

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback _{Overview}

Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

Outline

ntroduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration

Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities

Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

Outline

ntroduction Coupled-bunch Instabilitie

Bunch-by-bunch Feedback Overview

Technology

PLS-II Demonstration

Activities

Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration

Activitie

Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

Demonstration Summary

- Saturday, September 21:
 - Started from unpacking hardware around 11:15;
 - Connected A C hybrid output to the front-end, iGp12 outputs to amplifiers A and C;
 - Set up transverse feedback in X and Y by 14:00;
 - After lunch set up fast tune tracking to characterize tune variation;
 - Investigated observed offsets between spectrum analyzer and feedback notch tune measurement methods.

Sunday, September 22:

- Reconfigured for an A/B comparison with the SPring-8 system;
- Performed vertical and horizontal calibration;
- Reconfigured the feedback input chain, recalibrated;
- Spent the rest of the day demonstrating bunch cleaning.
- Monday, September 23:
 - Configured the feedback to increase camshaft bunch current;
 - Investigated transverse stability as a function of insertion device gaps;
 - Left ring running overnight with 7 mA camshaft bunch.

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback ^{Overview} Technology

PLS-II Demonstration

Activitie

Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

Summary

・ロト・日本・モー・モー うへぐ

Demonstration Summary

- Saturday, September 21:
 - Started from unpacking hardware around 11:15;
 - Connected A C hybrid output to the front-end, iGp12 outputs to amplifiers A and C;
 - Set up transverse feedback in X and Y by 14:00;
 - After lunch set up fast tune tracking to characterize tune variation;
 - Investigated observed offsets between spectrum analyzer and feedback notch tune measurement methods.

Sunday, September 22:

- Reconfigured for an A/B comparison with the SPring-8 system;
- Performed vertical and horizontal calibration;
- Reconfigured the feedback input chain, recalibrated;
- Spent the rest of the day demonstrating bunch cleaning.

Monday, September 23:

- Configured the feedback to increase camshaft bunch current;
- Investigated transverse stability as a function of insertion device gaps;
- Left ring running overnight with 7 mA camshaft bunch.

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration

Activitie

Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

Summary

・ロト・日本・日本・日本・日本・日本

Demonstration Summary

- Saturday, September 21:
 - Started from unpacking hardware around 11:15;
 - Connected A C hybrid output to the front-end, iGp12 outputs to amplifiers A and C;
 - Set up transverse feedback in X and Y by 14:00;
 - After lunch set up fast tune tracking to characterize tune variation;
 - Investigated observed offsets between spectrum analyzer and feedback notch tune measurement methods.

Sunday, September 22:

- Reconfigured for an A/B comparison with the SPring-8 system;
- Performed vertical and horizontal calibration;
- Reconfigured the feedback input chain, recalibrated;
- Spent the rest of the day demonstrating bunch cleaning.
- Monday, September 23:
 - Configured the feedback to increase camshaft bunch current;
 - Investigated transverse stability as a function of insertion device gaps;
 - Left ring running overnight with 7 mA camshaft bunch.

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration

Activitie

Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

Three Dimtel units:

iGp12 baseband processor;

- FBE-500LT analog front/back-end;
- BPMH-20-2G BPMH hybrid network.
- Used buttons A and C, adjustable delays to compensate for cable length errors;
- Only two amplifiers driven differentially: A and C.

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration

Activiti

Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

Three Dimtel units:

- iGp12 baseband processor;
- FBE-500LT analog front/back-end;
- BPMH-20-2G BPMH hybrid network.
- Used buttons A and C, adjustable delays to compensate for cable length errors;
- Only two amplifiers driven differentially: A and C.

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration

Activiti

Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

Three Dimtel units:

- iGp12 baseband processor;
- FBE-500LT analog front/back-end;
- BPMH-20-2G BPMH hybrid network.
- Used buttons A and C, adjustable delays to compensate for cable length errors;
- Only two amplifiers driven differentially: A and C.

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration

Activiti

Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

Three Dimtel units:

- iGp12 baseband processor;
- FBE-500LT analog front/back-end;
- BPMH-20-2G BPMH hybrid network.
- Used buttons A and C, adjustable delays to compensate for cable length errors;

Only two amplifiers driven differentially: A and C.

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration

Activiti

Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

Three Dimtel units:

- iGp12 baseband processor;
- FBE-500LT analog front/back-end;
- BPMH-20-2G BPMH hybrid network.
- Used buttons A and C, adjustable delays to compensate for cable length errors;
- Only two amplifiers driven differentially: A and C.

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration

Activiti

Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

Outline

ntroduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration

Activities

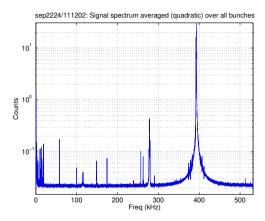
Comparison With SPring-8 Setup

Grow/Damp Measurements Tune Measurements Bunch Cleaning Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration


Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements

Bunch Cleaning

Summary

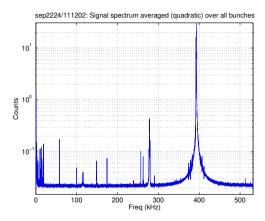
・ロト・国ト・ヨト ヨー うへの

Setup and Spectra

SPring-8 system in normal configuration;

- Dimtel system monitoring unused button D;
- Open-loop measurement, large X motion;
 - Another open-loop dataset, quiet;
- SPring-8 system operational, little effect in the vertical plane;
- Dimtel feedback running, both X and Y motion is suppressed.

Feedback


Introduction Coupled-bunch Instabilities

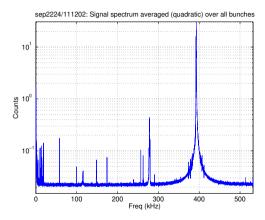
Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Sotup Grow/Damp Measurements

Tune Measurements Bunch Cleaning

Setup and Spectra

- SPring-8 system in normal configuration;
- Dimtel system monitoring unused button D;
- Open-loop measurement, large X motion;
 - Another open-loop dataset, quiet;
- SPring-8 system operational, little effect in the vertical plane;
- Dimtel feedback running, both X and Y motion is suppressed.


Feedback

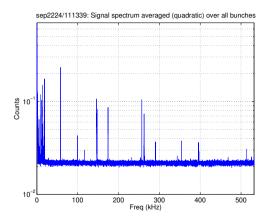
Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring

Grow/Damp Measurements Tune Measurements Bunch Cleaning

- SPring-8 system in normal configuration;
- Dimtel system monitoring unused button D;
- Open-loop measurement, large X motion;
 - Another open-loop dataset, quiet;
- SPring-8 system operational, little effect in the vertical plane;
- Dimtel feedback running, both X and Y motion is suppressed.


Feedback

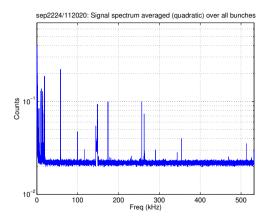
Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring

Grow/Damp Measurements Tune Measurements Bunch Cleaning

- SPring-8 system in normal configuration;
- Dimtel system monitoring unused button D;
- Open-loop measurement, large X motion;
- Another open-loop dataset, quiet;
- SPring-8 system operational, little effect in the vertical plane;
- Dimtel feedback running, both X and Y motion is suppressed.


Feedback

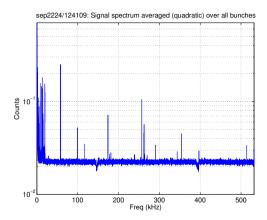
Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-Setup

Grow/Damp Measurements Tune Measurements Bunch Cleaning

- SPring-8 system in normal configuration;
- Dimtel system monitoring unused button D;
- Open-loop measurement, large X motion;
- Another open-loop dataset, quiet;
- SPring-8 system operational, little effect in the vertical plane;
- Dimtel feedback running, both X and Y motion is suppressed.


Feedback

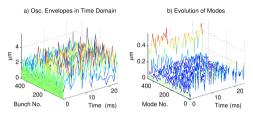
Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

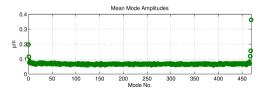
PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements

Grow/Damp Measurement Tune Measurements Bunch Cleaning

- SPring-8 system in normal configuration;
- Dimtel system monitoring unused button D;
- Open-loop measurement, large X motion;
- Another open-loop dataset, quiet;
- SPring-8 system operational, little effect in the vertical plane;
- Dimtel feedback running, both X and Y motion is suppressed.


Feedback

Introduction Coupled-bunch Instabilities

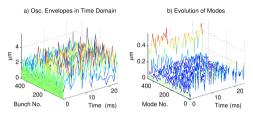

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements

Tune Measurements Bunch Cleaning

PLS-II:sep2224/111339: lo= 300mA, Dsamp= 1, ShifGain= 5, Nbun= 470, At v: G1= 91.2217, G2= 0, Ph1= -166.8886, Ph2= 0, Brkpt= 26458, Calib= 0.2.

- Data filtered around ν_x, calibration applied;
- Open-loop;
 - SPring-8 system;
- Dimtel system.


Feedback

Introduction Coupled-bunch Instabilities

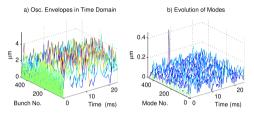

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration

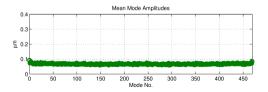
Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

PLS-II:sep2224/111339: lo= 300mA, Dsamp= 1, ShifGain= 5, Nbun= 470, At v: G1= 91.2217, G2= 0, Ph1= -166.8886, Ph2= 0, Brkpt= 26458, Calib= 0.2.

- Data filtered around ν_x, calibration applied;
- Open-loop;
 - SPring-8 system;
- Dimtel system.


Feedback

Introduction Coupled-bunch Instabilities

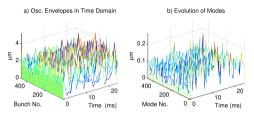

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration

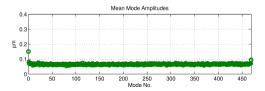
Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

PLS-II:sep2224/112020: lo= 300mA, Dsamp= 1, ShifGain= 5, Nbun= 470, At v: G1= 91.2217, G2= 0, Ph1= -166.8886, Ph2= 0, Brkpt= 26458, Calib= 0.2.

- Data filtered around ν_x, calibration applied;
- Open-loop;
- SPring-8 system;
- Dimtel system.


Feedback

Introduction Coupled-bunch Instabilities

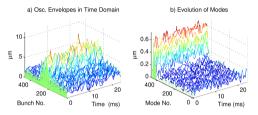

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration

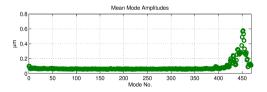
Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

PLS-II:sep2224/124109: lo= 300mA, Dsamp= 1, ShifGain= 3, Nbun= 469, At v: G1= 19.5005, G2= 0, Ph1= -166.766, Ph2= 0, Brkpt= 26458, Calib= 0.2.

- Data filtered around ν_x, calibration applied;
- Open-loop;
- SPring-8 system;
- Dimtel system.


Feedback

Introduction Coupled-bunch Instabilities

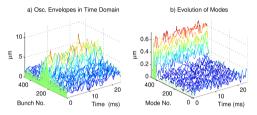

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration

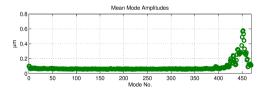
Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

PLS-II:sep2224/111339: lo= 300mA, Dsamp= 1, ShifGain= 5, Nbun= 470, At v: G1= 56.7333, G2= 0, Ph1= 170.9396, Ph2= 0, Brkpt= 26458, Calib= 0.22.

- Data filtered around ν_y, calibration applied;
 - Open-loop;
- SPring-8 system;
 - Dimtel system
- Autoscale mean mode amplitudes.


Feedback

Introduction Coupled-bunch Instabilities

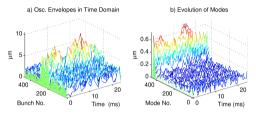

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration

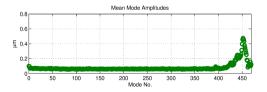
Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

 $\label{eq:PLS-II:sep2224/111339: lo=300mA, Dsamp= 1, ShifGain= 5, Nbun= 470, At <math display="inline">\nu;$ G1= 56.7333, G2= 0, Ph1= 170.9396, Ph2= 0, Brkpt= 26458, Calib= 0.22.

- Data filtered around ν_y, calibration applied;
- Open-loop;
- SPring-8 system;
 - Dimtel system
- Autoscale mean mode amplitudes.


Feedback

Introduction Coupled-bunch Instabilities

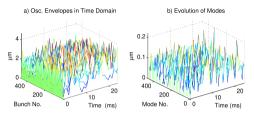

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration

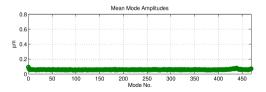
Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

PLS-II:sep2224/112020: lo= 300mA, Dsamp= 1, ShifGain= 5, Nbun= 470, At v: G1= 56.7333, G2= 0, Ph1= 170.9396, Ph2= 0, Brkpt= 26458, Calib= 0.22.

- Data filtered around ν_y, calibration applied;
- Open-loop;
- SPring-8 system;
- Dimtel system
- Autoscale mean mode amplitudes.


Feedback

Introduction Coupled-bunch Instabilities

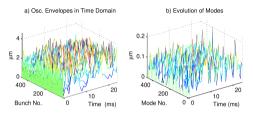

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration

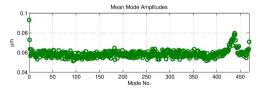
Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

PLS-II:sep2224/124109: lo= 300mA, Dsamp= 1, ShifGain= 3, Nbun= 469, At v: G1= 14.392, G2= 0, Ph1= -8.5923, Ph2= 0, Brkpt= 26458, Calib= 0.22.

- Data filtered around ν_y, calibration applied;
- Open-loop;
- SPring-8 system;
- Dimtel system;
- Autoscale mean mode amplitudes.


Feedback

Introduction Coupled-bunch Instabilities


Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration

Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

PLS-II:sep2224/124109: lo= 300mA, Dsamp= 1, ShifGain= 3, Nbun= 469, At v: G1= 14.392, G2= 0, Ph1= -8.5923, Ph2= 0, Brkpt= 26458, Calib= 0.22.

- Data filtered around ν_y, calibration applied;
- Open-loop;
- SPring-8 system;
- Dimtel system;
- Autoscale mean mode amplitudes.

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration

Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

Outline

ntroduction Coupled-bunch Instabilitie

Bunch-by-bunch Feedback Overview

Technology

PLS-II Demonstration

Activities Comparison With SPring-8 Setup Grow/Damp Measurements

Tune Measurements Bunch Cleaning

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

Summary

・ロト・国ト・ヨト ヨー うへの

Standard methods of characterization:

- Frequency domain transfer function;
- Time domain step/pulse response.
- These methods fail for unstable beam;
- In 1990s our group at SLAC developed so-called transient diagnostics:
 - Upon some trigger, turn off feedback and start recording beam motion;
 - Unstable motion grows from ever-present noise-floor level excitation;
 - After an adjustable open-loop time period, turn feedback on;
- Resulting data set captures open-loop growth of the fastest unstable modes and closed-loop damping;
- Used to characterize driving terms (impedances) and feedback performance, optimize tuning.

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Sotup Grow/Damp Measurements Tune Measurements Bunch Cleaning

Standard methods of characterization:

- Frequency domain transfer function;
- Time domain step/pulse response.

These methods fail for unstable beam;

- In 1990s our group at SLAC developed so-called transient diagnostics:
 - Upon some trigger, turn off feedback and start recording beam motion;
 - Unstable motion grows from ever-present noise-floor level excitation;
 - After an adjustable open-loop time period, turn feedback on;
- Resulting data set captures open-loop growth of the fastest unstable modes and closed-loop damping;
- Used to characterize driving terms (impedances) and feedback performance, optimize tuning.

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Sotup Grow/Damp Measurements Tune Measurements Bunch Cleaning

- Standard methods of characterization:
 - Frequency domain transfer function;
 - Time domain step/pulse response.
- These methods fail for unstable beam;
- In 1990s our group at SLAC developed so-called transient diagnostics:
 - Upon some trigger, turn off feedback and start recording beam motion;
 - Unstable motion grows from ever-present noise-floor level excitation;
 - After an adjustable open-loop time period, turn feedback on;
- Resulting data set captures open-loop growth of the fastest unstable modes and closed-loop damping;
- Used to characterize driving terms (impedances) and feedback performance, optimize tuning.

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

- Standard methods of characterization:
 - Frequency domain transfer function;
 - Time domain step/pulse response.
- These methods fail for unstable beam;
- In 1990s our group at SLAC developed so-called transient diagnostics:
 - Upon some trigger, turn off feedback and start recording beam motion;
 - Unstable motion grows from ever-present noise-floor level excitation;
 - After an adjustable open-loop time period, turn feedback on;
- Resulting data set captures open-loop growth of the fastest unstable modes and closed-loop damping;
- Used to characterize driving terms (impedances) and feedback performance, optimize tuning.

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

- Standard methods of characterization:
 - Frequency domain transfer function;
 - Time domain step/pulse response.
- These methods fail for unstable beam;
- In 1990s our group at SLAC developed so-called transient diagnostics:
 - Upon some trigger, turn off feedback and start recording beam motion;
 - Unstable motion grows from ever-present noise-floor level excitation;
 - After an adjustable open-loop time period, turn feedback on;
- Resulting data set captures open-loop growth of the fastest unstable modes and closed-loop damping;
- Used to characterize driving terms (impedances) and feedback performance, optimize tuning.

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Solup Grow/Damp Measurements Tune Measurements Bunch Cleaning

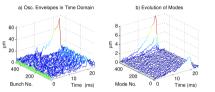
- Standard methods of characterization:
 - Frequency domain transfer function;
 - Time domain step/pulse response.
- These methods fail for unstable beam;
- In 1990s our group at SLAC developed so-called transient diagnostics:
 - Upon some trigger, turn off feedback and start recording beam motion;
 - Unstable motion grows from ever-present noise-floor level excitation;
 - After an adjustable open-loop time period, turn feedback on;
- Resulting data set captures open-loop growth of the fastest unstable modes and closed-loop damping;
- Used to characterize driving terms (impedances) and feedback performance, optimize tuning.

Feedback

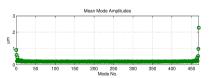
Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Sotup Grow/Damp Measurements Tune Measurements Bunch Cleaning


- Standard methods of characterization:
 - Frequency domain transfer function;
 - Time domain step/pulse response.
- These methods fail for unstable beam;
- In 1990s our group at SLAC developed so-called transient diagnostics:
 - Upon some trigger, turn off feedback and start recording beam motion;
 - Unstable motion grows from ever-present noise-floor level excitation;
 - After an adjustable open-loop time period, turn feedback on;
- Resulting data set captures open-loop growth of the fastest unstable modes and closed-loop damping;
- Used to characterize driving terms (impedances) and feedback performance, optimize tuning.

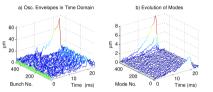
Feedback


Introduction Coupled-bunch Instabilities

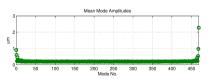
Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Sotup Grow/Damp Measurements Tune Measurements Bunch Cleaning

PLS-II:sep2324/162028: lo= 294.2489mA, Dsamp= 1, ShifGain= 6, Nbun= 470, At v: G1= 59.1503, G2= 0, Ph1= 20.4907, Ph2= 0, Brkpt= 21201, Calib= 0.083442.


- At nominal ID gaps PLS-II is at the threshold of horizontal resistive wall instability;
- Taken with 4A EPU at 20 mm gap;
- Grow/damp at 300 mA, 40 ms growth time;
- Only a resistive wall mode;
- Fit exponentials to growth and damping amplitudes, fairly clean fits.

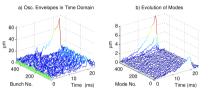
Feedback


Introduction Coupled-bunch Instabilities

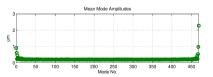
Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

PLS-II:sep2324/162028: lo= 294.2489mA, Dsamp= 1, ShifGain= 6, Nbun= 470, At v: G1= 59.1503, G2= 0, Ph1= 20.4907, Ph2= 0, Brkpt= 21201, Calib= 0.083442


- At nominal ID gaps PLS-II is at the threshold of horizontal resistive wall instability;
- Taken with 4A EPU at 20 mm gap;
 - Grow/damp at 300 mA, 40 ms growth time;
- Only a resistive wall mode;
- Fit exponentials to growth and damping amplitudes, fairly clean fits.

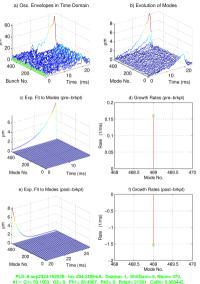
Feedback


Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Sotup Grow/Damp Measurements Tune Measurements Bunch Cleaning

PLS-II:sep2324/162028: lo= 294.2489mA, Dsamp= 1, ShifGain= 6, Nbun= 470, At v: G1= 59.1503, G2= 0, Ph1= 20.4907, Ph2= 0, Brkpt= 21201, Calib= 0.083442.

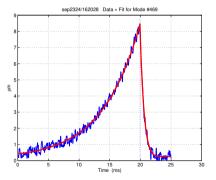

- At nominal ID gaps PLS-II is at the threshold of horizontal resistive wall instability;
- Taken with 4A EPU at 20 mm gap;
- Grow/damp at 300 mA, 40 ms growth time;
- Only a resistive wall mode;
- Fit exponentials to growth and damping amplitudes, fairly clean fits.

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Solup Grow/Damp Measurements Tune Measurements Bunch Cleaning

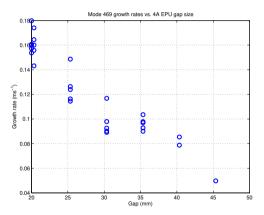

- At nominal ID gaps PLS-II is at the threshold of horizontal resistive wall instability;
- Taken with 4A EPU at 20 mm gap;
 - Grow/damp at 300 mA, 40 ms growth time;
- Only a resistive wall mode;
- Fit exponentials to growth and damping amplitudes, fairly clean fits.

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Sotup Grow/Damp Measurements Tune Measurements Bunch Cleaning


- At nominal ID gaps PLS-II is at the threshold of horizontal resistive wall instability;
- Taken with 4A EPU at 20 mm gap;
 - Grow/damp at 300 mA, 40 ms growth time;
- Only a resistive wall mode;
 - Fit exponentials to growth and damping amplitudes, fairly clean fits.

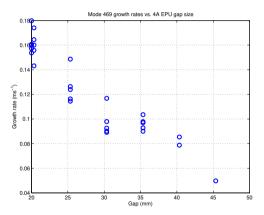
Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Sotup Grow/Damp Measurements Tune Measurements Bunch Cleaning

Adjust 4A EPU from 45.34 to 20 mm gap;

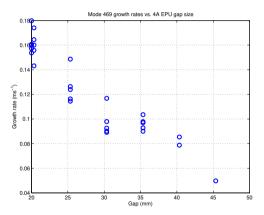

- Resistive wall growth rates vs. gap setting;
- Moderate growth rates, damping is an order of magnitude faster;
- Taken with 7C SFA and 5C SFA at minimal gap.

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

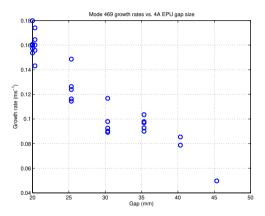

- Adjust 4A EPU from 45.34 to 20 mm gap;
- Resistive wall growth rates vs. gap setting;
- Moderate growth rates, damping is an order of magnitude faster;
 Taken with 7C SFA and 5C SFA at minimal gap.

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

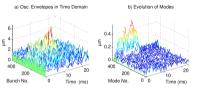

- Adjust 4A EPU from 45.34 to 20 mm gap;
- Resistive wall growth rates vs. gap setting;
- Moderate growth rates, damping is an order of magnitude faster;
- Taken with 7C SFA and 5C SFA at minimal gap.

Feedback

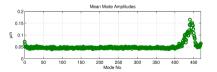
Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning


- Adjust 4A EPU from 45.34 to 20 mm gap;
- Resistive wall growth rates vs. gap setting;
- Moderate growth rates, damping is an order of magnitude faster;
- Taken with 7C SFA and 5C SFA at minimal gap.

Feedback

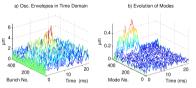

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

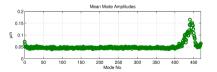
PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

 $[\]label{eq:PLS-II:sep2224/124435: los 300mA, Dsamps 1, ShilGains 3, Nbuns 469, At <math display="inline">\nu :$ G1= 14.4209, G2= 0, Ph1= -9.5164, Ph2= 0, Brkpt= 13585, Calibs 0.22

Grow/damp at 300 mA, 13 ms open loop;


- Increasing amplitudes towards the end of the train, a wide band of modes point to ion instability;
- A beating mess in time domain;
- RMS average of the envelopes make more sense;
- Can even fit growth and damping rates;
- Short section at the start is roughly exponential;
- Open loop time of 22 ms shows typical ion behavior — motion saturates at low amplitudes.

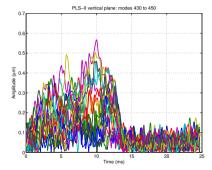
Feedback


Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

PLS-II:sep2224/124435: Io= 300mA, Dsamp= 1, ShitGain= 3, Nbun= 469, At v: G1= 14.4209, G2= 0, Ph1= -9.5164, Ph2= 0, Brkpt= 13585, Calib= 0.22

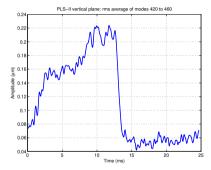

- Grow/damp at 300 mA, 13 ms open loop;
- Increasing amplitudes towards the end of the train, a wide band of modes point to ion instability;
- A beating mess in time domain;
- RMS average of the envelopes make more sense;
- Can even fit growth and damping rates;
- Short section at the start is roughly exponential;
- Open loop time of 22 ms shows typical ion behavior — motion saturates at low amplitudes.

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

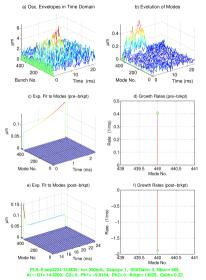

- Grow/damp at 300 mA, 13 ms open loop;
- Increasing amplitudes towards the end of the train, a wide band of modes point to ion instability;
- A beating mess in time domain;
- RMS average of the envelopes make more sense;
- Can even fit growth and damping rates;
- Short section at the start is roughly exponential;
- Open loop time of 22 ms shows typical ion behavior — motion saturates at low amplitudes.

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

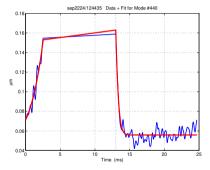

- Grow/damp at 300 mA, 13 ms open loop;
- Increasing amplitudes towards the end of the train, a wide band of modes point to ion instability;
- A beating mess in time domain;
- RMS average of the envelopes make more sense;
- Can even fit growth and damping rates;
- Short section at the start is roughly exponential;
- Open loop time of 22 ms shows typical ion behavior — motion saturates at low amplitudes.

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning


- Grow/damp at 300 mA, 13 ms open loop;
- Increasing amplitudes towards the end of the train, a wide band of modes point to ion instability;
- A beating mess in time domain;
 - RMS average of the envelopes make more sense;
 - Can even fit growth and damping rates;
 - Short section at the start is roughly exponential;
 - Open loop time of 22 ms shows typical ion behavior — motion saturates at low amplitudes.

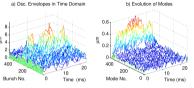
Feedback

Introduction Coupled-bunch Instabilities

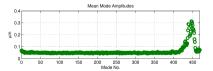
Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

- Grow/damp at 300 mA, 13 ms open loop;
- Increasing amplitudes towards the end of the train, a wide band of modes point to ion instability;
- A beating mess in time domain;
- RMS average of the envelopes make more sense;
- Can even fit growth and damping rates;
- Short section at the start is roughly exponential;
- Open loop time of 22 ms shows typical ion behavior — motion saturates at low amplitudes.


Feedback

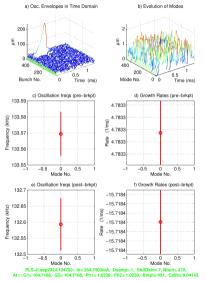
Introduction Coupled-bunch Instabilities


Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

Vertical Grow/damp Measurement

PLS-II:sep2224/124641: Io= 300mA, Dsamp= 1, ShifGain= 3, Nbun= 469, At v: G1= 14.4209, G2= 0, Ph1= -9.5164, Ph2= 0, Brkpt= 23158, Calib= 0.22

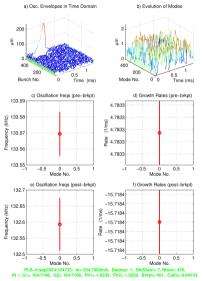

- Grow/damp at 300 mA, 13 ms open loop;
- Increasing amplitudes towards the end of the train, a wide band of modes point to ion instability;
- A beating mess in time domain;
 - RMS average of the envelopes make more sense;
- Can even fit growth and damping rates;
- Short section at the start is roughly exponential;
- Open loop time of 22 ms shows typical ion behavior — motion saturates at low amplitudes.

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

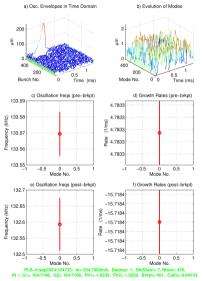

- High single bunch current leads to coupling of dipole and head-tail modes — transverse mode coupling instability (TMCI);
- PLS-II vertical TMCI threshold is 4.3 mA;
- Feedback cannot affect the head-tail modes, but damping of the dipole mode is enough;
- A single-bunch grow/damp feedback turned off for camshaft bunch only;
- Fast growth, 0.5 ms open-loop time;
 - High feedback gain means capture range is limited;
- Feedback on at 0.6 ms only slows down the growth.

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

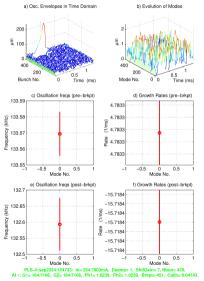

- High single bunch current leads to coupling of dipole and head-tail modes — transverse mode coupling instability (TMCI);
- PLS-II vertical TMCI threshold is 4.3 mA;
- Feedback cannot affect the head-tail modes, but damping of the dipole mode is enough;
- A single-bunch grow/damp feedback turned off for camshaft bunch only;
- Fast growth, 0.5 ms open-loop time;
 - High feedback gain means capture range is limited;
- Feedback on at 0.6 ms only slows down the growth.

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

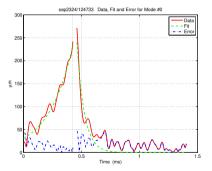

- High single bunch current leads to coupling of dipole and head-tail modes — transverse mode coupling instability (TMCI);
- PLS-II vertical TMCI threshold is 4.3 mA;
- Feedback cannot affect the head-tail modes, but damping of the dipole mode is enough;
- A single-bunch grow/damp feedback turned off for camshaft bunch only;
- Fast growth, 0.5 ms open-loop time;
- High feedback gain means capture range is limited;
- Feedback on at 0.6 ms only slows down the growth.

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

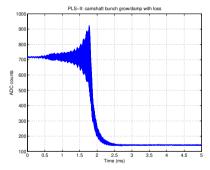

- High single bunch current leads to coupling of dipole and head-tail modes — transverse mode coupling instability (TMCI);
- PLS-II vertical TMCI threshold is 4.3 mA;
- Feedback cannot affect the head-tail modes, but damping of the dipole mode is enough;
- A single-bunch grow/damp feedback turned off for camshaft bunch only;
- Fast growth, 0.5 ms open-loop time;
 - High feedback gain means capture range is limited;
- Feedback on at 0.6 ms only slows down the growth.

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Sotup Grow/Damp Measurements Tune Measurements Bunch Cleaning


- High single bunch current leads to coupling of dipole and head-tail modes — transverse mode coupling instability (TMCI);
- PLS-II vertical TMCI threshold is 4.3 mA;
- Feedback cannot affect the head-tail modes, but damping of the dipole mode is enough;
- A single-bunch grow/damp feedback turned off for camshaft bunch only;
- Fast growth, 0.5 ms open-loop time;
- High feedback gain means capture range is limited;
- Feedback on at 0.6 ms only slows down the growth.

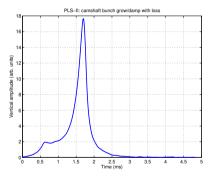
Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Solup Grow/Damp Measurements Tune Measurements Bunch Cleaning

- High single bunch current leads to coupling of dipole and head-tail modes — transverse mode coupling instability (TMCI);
- PLS-II vertical TMCI threshold is 4.3 mA;
- Feedback cannot affect the head-tail modes, but damping of the dipole mode is enough;
- A single-bunch grow/damp feedback turned off for camshaft bunch only;
- Fast growth, 0.5 ms open-loop time;
- High feedback gain means capture range is limited;

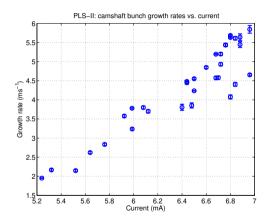

Feedback on at 0.6 ms only slows down the growth.

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Sotup Grow/Damp Measurements Tune Measurements Bunch Cleaning


- High single bunch current leads to coupling of dipole and head-tail modes — transverse mode coupling instability (TMCI);
- PLS-II vertical TMCI threshold is 4.3 mA;
- Feedback cannot affect the head-tail modes, but damping of the dipole mode is enough;
- A single-bunch grow/damp feedback turned off for camshaft bunch only;
- Fast growth, 0.5 ms open-loop time;
- High feedback gain means capture range is limited;
- Feedback on at 0.6 ms only slows down the growth.

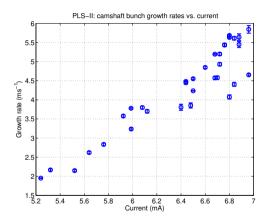
Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Softup Grow/Damp Measurements Tune Measurements Bunch Cleaning

Growth rates vs. camshaft bunch current;

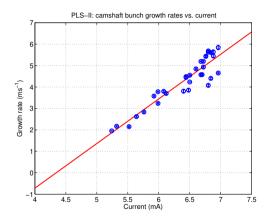

- Current is estimated from the scope peak-to-peak amplitude;
- Steep rise in growth rates, reaching 6 ms⁻¹ at 7 mA — 180 turns;
- Reached 7.6 mA with the demonstration setup;
- With a separate X and Y processors (each driving four amplifiers) one can expect to reach even higher camshaft currents.

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

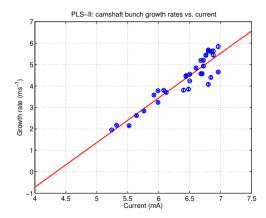

- Growth rates vs. camshaft bunch current;
- Current is estimated from the scope peak-to-peak amplitude;
- Steep rise in growth rates, reaching 6 ms⁻¹ at 7 mA — 180 turns;
- Reached 7.6 mA with the demonstration setup;
- With a separate X and Y processors (each driving four amplifiers) one can expect to reach even higher camshaft currents.

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

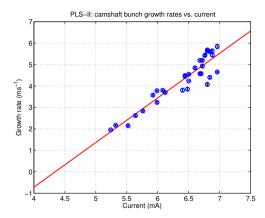

- Growth rates vs. camshaft bunch current;
- Current is estimated from the scope peak-to-peak amplitude;
- Steep rise in growth rates, reaching 6 ms⁻¹ at 7 mA — 180 turns;
- Reached 7.6 mA with the demonstration setup;
- With a separate X and Y processors (each driving four amplifiers) one can expect to reach even higher camshaft currents.

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning


- Growth rates vs. camshaft bunch current;
- Current is estimated from the scope peak-to-peak amplitude;
- Steep rise in growth rates, reaching 6 ms⁻¹ at 7 mA — 180 turns;
- Reached 7.6 mA with the demonstration setup;
- With a separate X and Y processors (each driving four amplifiers) one can expect to reach even higher camshaft currents.

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Danip Measurements Tune Measurements Bunch Cleaning

- Growth rates vs. camshaft bunch current;
- Current is estimated from the scope peak-to-peak amplitude;
- Steep rise in growth rates, reaching 6 ms⁻¹ at 7 mA — 180 turns;
- Reached 7.6 mA with the demonstration setup;
- With a separate X and Y processors (each driving four amplifiers) one can expect to reach even higher camshaft currents.

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback ^{Overview} Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

Outline

ntroduction Coupled-bunch Instabilitie

Bunch-by-bunch Feedback Overview

Technology

PLS-II Demonstration

Activities Comparison With SPring-8 Setup Grow/Damp Measurements

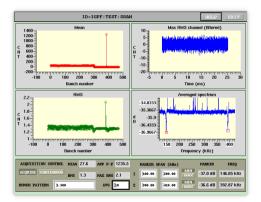
Tune Measurements

Bunch Cleaning

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology


PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements

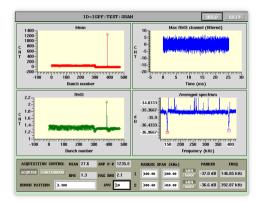
Tune Measurements

Bunch Cleaning

Summary

▲□▶▲□▶▲□▶▲□▶ □ のへで

Feedback in closed-loop operation, both X and Y;

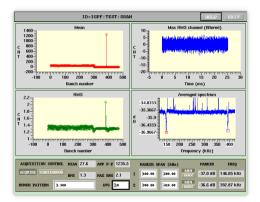

- Averaged beam spectrum (lower right) shows two notches;
- These notches allows us to perform parasitic tune measurement.

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

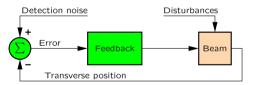

- Feedback in closed-loop operation, both X and Y;
- Averaged beam spectrum (lower right) shows two notches;
- These notches allows us to perform parasitic tune measurement.

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning


- Feedback in closed-loop operation, both X and Y;
- Averaged beam spectrum (lower right) shows two notches;
- These notches allows us to perform parasitic tune measurement.

Feedback

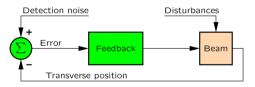
Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

- In transverse planes there are very few steady-state disturbances;
- Instabilities are damped to the noise floor;
- Spectrum is determined by the detection noise and the feedback loop response;
- Open loop transfer function L(ω) peaks at beam resonance;
- Transfer gain from the detection noise to the feedback input is 1+l(w);
- Maximum attenuation at beam resonance a notch.

Feedback


Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

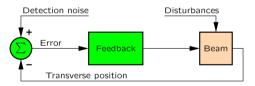
PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

Summary

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

- In transverse planes there are very few steady-state disturbances;
- Instabilities are damped to the noise floor;
- Spectrum is determined by the detection noise and the feedback loop response;
- Open loop transfer function L(ω) peaks at beam resonance;
- Transfer gain from the detection noise to the feedback input is 1+l(w);
- Maximum attenuation at beam resonance a notch.

Feedback


Introduction Coupled-bunch Instabilities

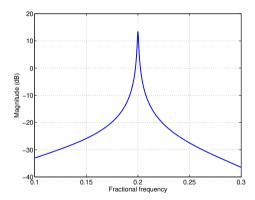
Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

Summary

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

- In transverse planes there are very few steady-state disturbances;
- Instabilities are damped to the noise floor;
- Spectrum is determined by the detection noise and the feedback loop response;
- Open loop transfer function L(ω) peaks at beam resonance;
- Transfer gain from the detection noise to the feedback input is 1+l(w);
- Maximum attenuation at beam resonance a notch.


▲□▶▲□▶▲글▶▲글▶ 글 りゅつ

Feedback

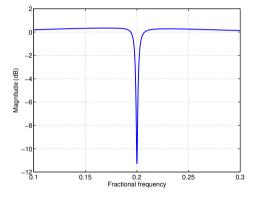
Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

- In transverse planes there are very few steady-state disturbances;
- Instabilities are damped to the noise floor;
- Spectrum is determined by the detection noise and the feedback loop response;
- Open loop transfer function L(ω) peaks at beam resonance;
- Transfer gain from the detection noise to the feedback input is 1+L(w);
- Maximum attenuation at beam resonance a notch.

Feedback


Introduction Coupled-bunch Instabilities

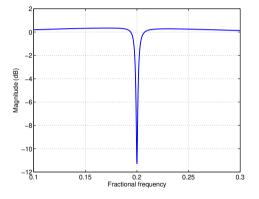
Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

Summary

・ロト・日本・日本・日本・日本・日本

- In transverse planes there are very few steady-state disturbances;
- Instabilities are damped to the noise floor;
- Spectrum is determined by the detection noise and the feedback loop response;
- Open loop transfer function L(ω) peaks at beam resonance;
- Transfer gain from the detection noise to the feedback input is 1+L(w);
- Maximum attenuation at beam resonance a notch.

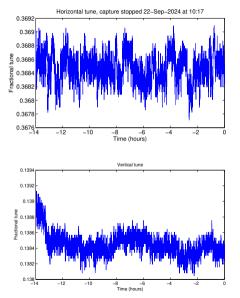

▲□▶▲□▶▲글▶▲글▶ 글 りゅつ

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning


- In transverse planes there are very few steady-state disturbances;
- Instabilities are damped to the noise floor;
- Spectrum is determined by the detection noise and the feedback loop response;
- Open loop transfer function L(ω) peaks at beam resonance;
- Transfer gain from the detection noise to the feedback input is 1+L(w);
- Maximum attenuation at beam resonance — a notch.

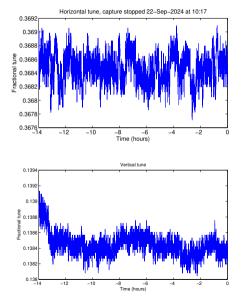
Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

Overnight capture of tune monitor at 1 Hz;

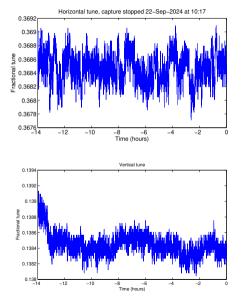

- Averaging time constant of around 30 s to mask injections;
- Observed an offset of ~ 0.005 between the notch and the swept spectrum analyzer measurement;
- This offset is due to the amplitude-dependent tune shift, since notch measurement happens at much lower oscillation amplitudes.

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning


- Overnight capture of tune monitor at 1 Hz;
- Averaging time constant of around 30 s to mask injections;
- Observed an offset of ~ 0.005 between the notch and the swept spectrum analyzer measurement;
- This offset is due to the amplitude-dependent tune shift, since notch measurement happens at much lower oscillation amplitudes.

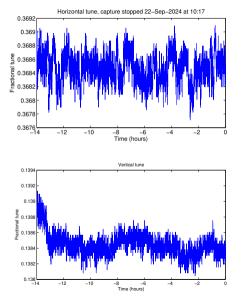
Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

- Overnight capture of tune monitor at 1 Hz;
- Averaging time constant of around 30 s to mask injections;
- Observed an offset of ~ 0.005 between the notch and the swept spectrum analyzer measurement;


This offset is due to the amplitude-dependent tune shift, since notch measurement happens at much lower oscillation amplitudes.

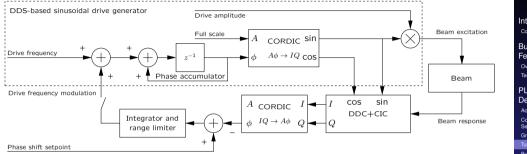
Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

- Overnight capture of tune monitor at 1 Hz;
- Averaging time constant of around 30 s to mask injections;
- Observed an offset of ~ 0.005 between the notch and the swept spectrum analyzer measurement;
- This offset is due to the amplitude-dependent tune shift, since notch measurement happens at much lower oscillation amplitudes.

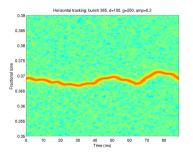

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring 8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

Single Bunch Phase Tracking


- A single bunch is excited with a sinusoidal excitation;
- Response is detected relative to the excitation to determine the phase shift;
- In closed loop, phase tracker adjusts the excitation frequency to maintain the desired phase shift value;
- Adjustable integration time, tracking range, loop gain.

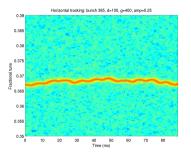
Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

Optimized X tracking with 100 turns decimation;

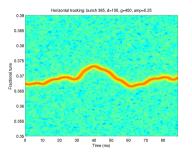

- One more shot;
- And another one;
- Downconvert to baseband to separate amplitude and phase;
- We used fast tune tracking to establish calibration.

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

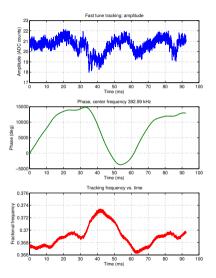

- Optimized X tracking with 100 turns decimation;
- One more shot;
- And another one;
- Downconvert to baseband to separate amplitude and phase;
- We used fast tune tracking to establish calibration.

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

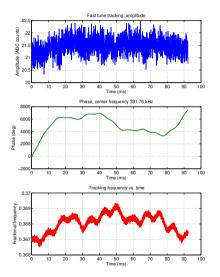

- Optimized X tracking with 100 turns decimation;
- One more shot;
- And another one;
- Downconvert to baseband to separate amplitude and phase;
- We used fast tune tracking to establish calibration.

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

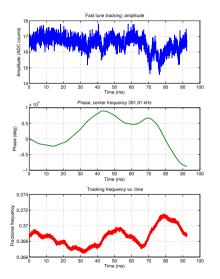

- Optimized X tracking with 100 turns decimation;
- One more shot;
- And another one;
- Downconvert to baseband to separate amplitude and phase;
- We used fast tune tracking to establish calibration.

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning


- Optimized X tracking with 100 turns decimation;
- One more shot;
- And another one;
- Downconvert to baseband to separate amplitude and phase;
- We used fast tune tracking to establish calibration.

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

- Optimized X tracking with 100 turns decimation;
- One more shot;
- And another one;
- Downconvert to baseband to separate amplitude and phase;
- We used fast tune tracking to establish calibration.

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

Outline

ntroduction Coupled-bunch Instabiliti

Bunch-by-bunch Feedback

Overview Technology

PLS-II Demonstration

Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Sotup Grow/Damp Measurements Tune Measurements

Summary

・ロト・国ト・ヨト ヨー うへの

ID=IGPF:TEST HELP EXIT				
BUNCH CLEANING SAVED VALUE				
AMPLITUDE	<u>]</u> 0.6000	0.5002		
FRACTIONAL TUNE	0.210000	25.0000 kHz		
FRACTIONAL SPAN	0.001000	0.0000 kHz		
PERIOD	(10000.0 us	0.0 us		
CLEAN PATTERN	11:20			
BUNCH CLEANING	Disable	Enable		

Bunch cleaning is done by iGp12 as follows:

- Apply normal negative feedback to the bunches we want to keep;
- Turn off the feedback for the bunches to be removed;
- Apply sine or square wave excitation with frequency sweeping to the bunches we are cleaning.
- With two power amplifiers we barely had enough kick to clean;
- Removed 3 bunches: 296, 299, 300;
- After cleaning optimization, with 9 bunches cleaned;
- Need optical diagnostics to characterize bunch purity.

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

ID=IGPF:TEST HELP EXIT				
BUNCH CLEANING SAVED VALUE				
AMPLITUDE] 0.6000	0.5002		
FRACTIONAL TUNE	0.210000	25.0000 kHz		
FRACTIONAL SPAN	0.001000	0.0000 kHz		
PERIOD	[10000.0 us	0.0 us		
CLEAN PATTERN	11:20			
BUNCH CLEANING	Disable	Enable		

- Bunch cleaning is done by iGp12 as follows:
 - Apply normal negative feedback to the bunches we want to keep;
 - Turn off the feedback for the bunches to be removed;
 - Apply sine or square wave excitation with frequency sweeping to the bunches we are cleaning.
- With two power amplifiers we barely had enough kick to clean;
- Removed 3 bunches: 296, 299, 300;
- After cleaning optimization, with 9 bunches cleaned;
- Need optical diagnostics to characterize bunch purity.

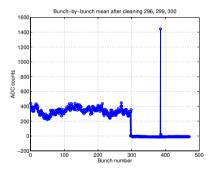
Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

ID=IGPF:TEST HELP EXIT				
BUNCH CLEANING SAVED VALUE				
AMPLITUDE	<u>]</u> 0.6000	0.5002		
FRACTIONAL TUNE	0.210000	25.0000 kHz		
FRACTIONAL SPAN	0.001000	0.0000 kHz		
PERIOD	(10000.0 us	0.0 us		
CLEAN PATTERN	j 11:20			
BUNCH CLEANING	Disable	Enable		

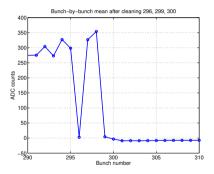

- Bunch cleaning is done by iGp12 as follows:
 - Apply normal negative feedback to the bunches we want to keep;
 - Turn off the feedback for the bunches to be removed;
 - Apply sine or square wave excitation with frequency sweeping to the bunches we are cleaning.
- With two power amplifiers we barely had enough kick to clean;
- Removed 3 bunches: 296, 299, 300;
- After cleaning optimization, with 9 bunches cleaned;
- Need optical diagnostics to characterize bunch purity.

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

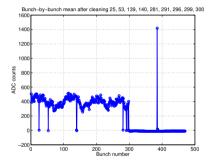

- Bunch cleaning is done by iGp12 as follows:
 - Apply normal negative feedback to the bunches we want to keep;
 - Turn off the feedback for the bunches to be removed;
 - Apply sine or square wave excitation with frequency sweeping to the bunches we are cleaning.
- With two power amplifiers we barely had enough kick to clean;
- Removed 3 bunches: 296, 299, 300;
- After cleaning optimization, with 9 bunches cleaned;
- Need optical diagnostics to characterize bunch purity.

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleanina

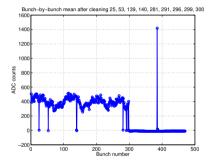

- Bunch cleaning is done by iGp12 as follows:
 - Apply normal negative feedback to the bunches we want to keep;
 - Turn off the feedback for the bunches to be removed;
 - Apply sine or square wave excitation with frequency sweeping to the bunches we are cleaning.
- With two power amplifiers we barely had enough kick to clean;
- Removed 3 bunches: 296, 299, 300;
- After cleaning optimization, with 9 bunches cleaned;
- Need optical diagnostics to characterize bunch purity.

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleanina


- Bunch cleaning is done by iGp12 as follows:
 - Apply normal negative feedback to the bunches we want to keep;
 - Turn off the feedback for the bunches to be removed;
 - Apply sine or square wave excitation with frequency sweeping to the bunches we are cleaning.
- With two power amplifiers we barely had enough kick to clean;
- Removed 3 bunches: 296, 299, 300;
- After cleaning optimization, with 9 bunches cleaned;
- Need optical diagnostics to characterize bunch purity.

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup GrowDamp Measurements Tune Measurements Bunch Cleaning

- Bunch cleaning is done by iGp12 as follows:
 - Apply normal negative feedback to the bunches we want to keep;
 - Turn off the feedback for the bunches to be removed;
 - Apply sine or square wave excitation with frequency sweeping to the bunches we are cleaning.
- With two power amplifiers we barely had enough kick to clean;
- Removed 3 bunches: 296, 299, 300;
- After cleaning optimization, with 9 bunches cleaned;
- Need optical diagnostics to characterize bunch purity.

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Chanina

Summary

Successfully demonstrated Dimtel bunch-by-bunch feedback in PLS-II;

Used one unit to control both X and Y planes;

- Demonstrated control of resistive wall and ion coupled-bunch instabilities as well as control of TMCI (single-bunch instability);
- Demonstrated a number of advanced beam control and diagnostic techniques, such as bunch cleaning, parasitic tune measurement, fast tune tracking.

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

Summary

- Successfully demonstrated Dimtel bunch-by-bunch feedback in PLS-II;
- Used one unit to control both X and Y planes;
- Demonstrated control of resistive wall and ion coupled-bunch instabilities as well as control of TMCI (single-bunch instability);
- Demonstrated a number of advanced beam control and diagnostic techniques, such as bunch cleaning, parasitic tune measurement, fast tune tracking.

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback ^{Overview} Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

- Successfully demonstrated Dimtel bunch-by-bunch feedback in PLS-II;
- Used one unit to control both X and Y planes;
- Demonstrated control of resistive wall and ion coupled-bunch instabilities as well as control of TMCI (single-bunch instability);
- Demonstrated a number of advanced beam control and diagnostic techniques, such as bunch cleaning, parasitic tune measurement, fast tune tracking.

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning

- Successfully demonstrated Dimtel bunch-by-bunch feedback in PLS-II;
- Used one unit to control both X and Y planes;
- Demonstrated control of resistive wall and ion coupled-bunch instabilities as well as control of TMCI (single-bunch instability);
- Demonstrated a number of advanced beam control and diagnostic techniques, such as bunch cleaning, parasitic tune measurement, fast tune tracking.

Feedback

Introduction Coupled-bunch Instabilities

Bunch-by-bunch Feedback Overview Technology

PLS-II Demonstration Activities Comparison With SPring-8 Setup Grow/Damp Measurements Tune Measurements Bunch Cleaning