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Coupled-bunch Instabilities

Resonant structure

Vacuum chamber

nn+1n+2

bunch n bunch n+2n+1bunch

Time

I Bunch passing through a resonant
structure excites a wakefield which is
sampled by the following bunches — a
coupling mechanism;

I In practice the wakefields have much
longer damping times than illustrated
here;

I Longitudinal bunch oscillation→ phase
modulation of the wakefield→ slope of
the wake voltage sampled by the
following bunches determines the
coupling.

I For certain combinations of wakefield
amplitudes and frequencies the overall
system becomes unstable.
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Coupled-bunch Instabilities: Eigenmodes and Eigenvalues

I A system of N bunches (coupled harmonic oscillators) has N
eigenmodes;

I From symmetry considerations we find that the eigenmodes correspond
to Fourier vectors;

I Mode number m describes the number of oscillation periods over one
turn;

I Wakefields affect the modal eigenvalues in both real (growth rate) and
imaginary (oscillation frequency) parts;

I Motion of bunch k oscillating in mode m is given by: Amei2πkm/NeΛmt

I Am — modal amplitude;
I Λm — complex modal eigenvalue.
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Modal Oscillation Example

I Harmonic number of 8;
I Top plot — mode 1;
I Bottom — mode 7;
I All bunches oscillate at the same

amplitude and frequency, but
different phases;

I Cannot distinguish modes m and
N −m (or −m) from a single turn
snapshot.
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Modal Oscillation With Damping

I Same modes with damping.
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Coupled-bunch Instabilities: Eigenvalues and Impedances

I Beam interacts with wakefields (impedances in frequency domain) at
synchrotron or betatron sidebands of revolution harmonics;

I Impedance functions are aliased, since they are sampled by the beam;

I Longitudinal: Λm = (−λ‖rad + iωs) +
παef 2

rf I0
E0hωs

Z ‖eff(mω0 + ωs);

I Effective impedance: Z ‖eff(ω) =
∑∞

p=−∞
pωrf+ω
ωrf

Z ‖(pωrf + ω)

I Transverse: Λm = (−λ⊥rad + iωβ)− cefrevI0
2ωβE0

Z⊥eff(mω0 + ωβ)

I Effective impedance: Z⊥eff(ω) =
∑∞

p=−∞ Z⊥(pωrf + ω)
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Bunch-by-bunch Feedback
Definition
In bunch-by-bunch feedback approach the actuator signal for a given bunch
depends only on the past motion of that bunch.

Controller

Beam
Kicker structure

Back−endFront−end

SensorBPM Actuator

I Bunches are processed sequentially;
I Correction kicks are applied one or more turns later;
I Diagonal feedback — computationally efficient;
I Extremely popular in storage rings — why?
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MIMO Model of Bunch-by-bunch Feedback

Feedback

Beam dynamics

H(ω)

H(ω)

H(ω)

. . .

y0

y1

yN−1

...

u0

u1

uN−1

... G(ω)

I N bunch positions and feedback kicks;
I Diagonal feedback matrix H(ω)I;
I Invariant under coordinate transformations.
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MIMO Model of Bunch-by-bunch Feedback

Feedback

Beam dynamics

H(ω)

H(ω)

H(ω)

. . .

ŷ0

ŷ1

ŷN−1

...

û0

û1

ûN−1

... . . .

Ĝ1(ω)

Ĝ0(ω)

ĜN−1(ω)

I Coordinate transformation to eigenmode basis;
I N feedback loops — one per mode;
I Identical feedback applied to each mode.



Feedback

Introduction
Coupled-bunch Instabilities

Bunch-by-bunch
Feedback
Overview

Technology

PLS-II
Demonstration
Activities

Comparison With SPring-8
Setup

Grow/Damp Measurements

Tune Measurements

Bunch Cleaning

Summary

Outline

Introduction
Coupled-bunch Instabilities

Bunch-by-bunch Feedback
Overview
Technology

PLS-II Demonstration
Activities
Comparison With SPring-8 Setup
Grow/Damp Measurements
Tune Measurements
Bunch Cleaning



Feedback

Introduction
Coupled-bunch Instabilities

Bunch-by-bunch
Feedback
Overview

Technology

PLS-II
Demonstration
Activities

Comparison With SPring-8
Setup

Grow/Damp Measurements

Tune Measurements

Bunch Cleaning

Summary

Bunch-by-bunch Feedback

Controller

Beam
Kicker structure

Back−endFront−end

SensorBPM Actuator

I Sensor (pickup);
I Analog front-end;
I Controller;
I Analog back-end;
I Actuator (kicker).



Feedback

Introduction
Coupled-bunch Instabilities

Bunch-by-bunch
Feedback
Overview

Technology

PLS-II
Demonstration
Activities

Comparison With SPring-8
Setup

Grow/Damp Measurements

Tune Measurements

Bunch Cleaning

Summary

Bunch-by-bunch Feedback

Controller

Beam
Kicker structure

Back−endFront−end

SensorBPM Actuator

I Sensor (pickup);
I Analog front-end;
I Controller;
I Analog back-end;
I Actuator (kicker).



Feedback

Introduction
Coupled-bunch Instabilities

Bunch-by-bunch
Feedback
Overview

Technology

PLS-II
Demonstration
Activities

Comparison With SPring-8
Setup

Grow/Damp Measurements

Tune Measurements

Bunch Cleaning

Summary

Beam Position Sensor

A

C

B

D

I To sense beam position we typically use
capacitive button beam position monitors
(BPMs);

I Buttons couple capacitively to the beam,
differentiating bunch current shape;

I BPM signals are wideband differentiated pulses
with 100–400 ps duration;

I Differentiation means sensor gain increases with
frequency.
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BPM Hybrid Network

A (180◦)

B (0◦) C (Σ)

D (∆)

A (180◦)

B (0◦) C (Σ)

D (∆)

A (180◦)

B (0◦) C (Σ)

D (∆)

A (180◦)

B (0◦) C (Σ)

D (∆)

B + C − A−D

B +D − A− C

A+B + C +D

A+B −D − C ∆Y

∆X

Σ

Q

A+ C

B +D

B −D

C −AA

C

B

D

I First stage of BPM signal processing — separating X/Y/Z signals;
I Since we are digitizing in the end, why not digitize raw signals?
I For X and Y we are dealing with small differences of large signals;
I If we can reject the common-mode at 20–30 dB level, that is also the

gain of low-noise amplifier we can use to improve sensitivity.
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Analog Front-end Design

D

C

B

A

BPM hybrid

F
ro

m
B
P
M

s
×

Variable
attenuator

Phase shifter

Frequency multiplier
frf

Bandpass filter

M × frf

Lowpass filter

To the ADC

MixerLNA

I Front-end requirements:
I Low amplitude and phase noise;
I Wideband to ensure high isolation between neighboring bunches.

I Input bandpass filter is an analog FIR filter that replicates BPM pulse
with spacing, matched to detection LO period;
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I Sensor (pickup);
I Analog front-end;
I Controller;
I Analog back-end;
I Actuator (kicker).
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Input
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Output
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Triggers

and digital I/O
Slow analog

Control

I Block diagram of a type frequently seen in accelerator context: ADC,
FPGA, and DAC;

I ADC, DAC: 12–14 bit, 500–600 megasamples per second, 400 ps
rise/fall times;

I FPGA implements algorithmically simple, but computationally intensive
processing.
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Inside the FPGA
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enable & coeff

Downsampling
turn selector

Adjustable
one turn delay

Three tap
kick shaper FIR

Drive signal with bunch-by-bunch enable

To the DACFrom the ADC

I Multiple filter chains to match FPGA processing rate to the bunch
crossing rate;

I Uneven stepping scheme — use groups of n and n + 1 bunches to
make sure signal from a given bunch ends up in the same filter chain on
consecutive turns;

I Bunch-by-bunch excitation and feedback enables;
I Back-end compensation.
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I Requirements:
I Adjustable phase shift at the tune

frequency;
I DC rejection to get rid of constant orbit

offsets;
I Low group delay.

I Filter design approach — sample one
period of a sine wave;
I Group delay is 1

2 of oscillation period;
I Nicely parameterized, often close to

optimal.
I More sophisticated design methods are

required when large perturbations are
present or with variable beam
dynamics, etc.
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I Analog front-end;
I Controller;
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I Actuator (kicker).
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Analog Back-end

amplifier
To the power

Bessel filterAmplifierVariable attenuatorMixer

×

2× multiplier

Step recovery diode
frequency multiplier

From the DAC

Digital control
interface

frf

500 MHz 2× frf
1000 MHz

CF = 1250 MHz

I Longitudinal kickers are usually built as highly damped (low Q,
wideband) cavities at 1–1.5 GHz;

I Baseband kick must be upconverted to the right frequency to drive
these;

I Phase linearity is critical to maintain the same feedback for different
modes;

I Constant group-delay filters are used to create single-sideband
modulation to efficiently drive kicker cavity.
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Transverse Kicker

I 50 Ω striplines driven differentially;
I Counter-propagating beam and kick signals;
I For 2 ns bunch spacing maximum stripline length is 1 ns:

I Fill time of 1 ns;
I Beam propagation time of 1 ns;
I Longer striplines will couple the kick to neighboring bunches.

I Shorter striplines — better isolation, have smaller kick.
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I 50 Ω striplines driven differentially;
I Counter-propagating beam and kick signals;
I For 2 ns bunch spacing maximum stripline length is 1 ns:

I Fill time of 1 ns;
I Beam propagation time of 1 ns;
I Longer striplines will couple the kick to neighboring bunches.

I Shorter striplines — better isolation, have smaller kick.
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Demonstration Summary
I Saturday, September 21:

I Started from unpacking hardware around 11:15;
I Connected A− C hybrid output to the front-end, iGp12 outputs to

amplifiers A and C;
I Set up transverse feedback in X and Y by 14:00;
I After lunch set up fast tune tracking to characterize tune variation;
I Investigated observed offsets between spectrum analyzer and feedback

notch tune measurement methods.
I Sunday, September 22:

I Reconfigured for an A/B comparison with the SPring-8 system;
I Performed vertical and horizontal calibration;
I Reconfigured the feedback input chain, recalibrated;
I Spent the rest of the day demonstrating bunch cleaning.

I Monday, September 23:
I Configured the feedback to increase camshaft bunch current;
I Investigated transverse stability as a function of insertion device gaps;
I Left ring running overnight with 7 mA camshaft bunch.
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Hardware Used

I Three Dimtel units:
I iGp12 baseband processor;
I FBE-500LT analog front/back-end;
I BPMH-20-2G BPMH hybrid network.

I Used buttons A and C, adjustable delays to
compensate for cable length errors;

I Only two amplifiers driven differentially: A and C.
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Setup and Spectra
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sep2224/111202: Signal spectrum averaged (quadratic) over all bunches

I SPring-8 system in normal
configuration;

I Dimtel system monitoring unused
button D;

I Open-loop measurement, large X
motion;

I Another open-loop dataset, quiet;
I SPring-8 system operational, little

effect in the vertical plane;
I Dimtel feedback running, both X

and Y motion is suppressed.
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sep2224/111339: Signal spectrum averaged (quadratic) over all bunches

I SPring-8 system in normal
configuration;

I Dimtel system monitoring unused
button D;

I Open-loop measurement, large X
motion;

I Another open-loop dataset, quiet;
I SPring-8 system operational, little

effect in the vertical plane;
I Dimtel feedback running, both X

and Y motion is suppressed.
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sep2224/112020: Signal spectrum averaged (quadratic) over all bunches

I SPring-8 system in normal
configuration;

I Dimtel system monitoring unused
button D;

I Open-loop measurement, large X
motion;

I Another open-loop dataset, quiet;
I SPring-8 system operational, little

effect in the vertical plane;
I Dimtel feedback running, both X

and Y motion is suppressed.
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sep2224/124109: Signal spectrum averaged (quadratic) over all bunches

I SPring-8 system in normal
configuration;

I Dimtel system monitoring unused
button D;

I Open-loop measurement, large X
motion;

I Another open-loop dataset, quiet;
I SPring-8 system operational, little

effect in the vertical plane;
I Dimtel feedback running, both X

and Y motion is suppressed.
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Modal Amplitudes, Horizontal Plane

I Data filtered around νx ,
calibration applied;

I Open-loop;
I SPring-8 system;
I Dimtel system.
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Modal Amplitudes, Horizontal Plane
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Modal Amplitudes, Horizontal Plane

I Data filtered around νx ,
calibration applied;

I Open-loop;
I SPring-8 system;
I Dimtel system.
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Modal Amplitudes, Vertical Plane

I Data filtered around νy ,
calibration applied;

I Open-loop;
I SPring-8 system;
I Dimtel system;
I Autoscale mean mode

amplitudes.
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Modal Amplitudes, Vertical Plane

I Data filtered around νy ,
calibration applied;

I Open-loop;
I SPring-8 system;
I Dimtel system;
I Autoscale mean mode

amplitudes.
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Modal Amplitudes, Vertical Plane

I Data filtered around νy ,
calibration applied;

I Open-loop;
I SPring-8 system;
I Dimtel system;
I Autoscale mean mode

amplitudes.
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Modal Amplitudes, Vertical Plane

I Data filtered around νy ,
calibration applied;

I Open-loop;
I SPring-8 system;
I Dimtel system;
I Autoscale mean mode

amplitudes.
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Modal Amplitudes, Vertical Plane

I Data filtered around νy ,
calibration applied;

I Open-loop;
I SPring-8 system;
I Dimtel system;
I Autoscale mean mode

amplitudes.
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How Does One Characterize an Unstable System?

I Standard methods of characterization:
I Frequency domain — transfer function;
I Time domain — step/pulse response.

I These methods fail for unstable beam;
I In 1990s our group at SLAC developed so-called transient diagnostics:

I Upon some trigger, turn off feedback and start recording beam motion;
I Unstable motion grows from ever-present noise-floor level excitation;
I After an adjustable open-loop time period, turn feedback on;

I Resulting data set captures open-loop growth of the fastest unstable
modes and closed-loop damping;

I Used to characterize driving terms (impedances) and feedback
performance, optimize tuning.



Feedback

Introduction
Coupled-bunch Instabilities

Bunch-by-bunch
Feedback
Overview

Technology

PLS-II
Demonstration
Activities

Comparison With SPring-8
Setup

Grow/Damp Measurements

Tune Measurements

Bunch Cleaning

Summary

How Does One Characterize an Unstable System?

I Standard methods of characterization:
I Frequency domain — transfer function;
I Time domain — step/pulse response.

I These methods fail for unstable beam;
I In 1990s our group at SLAC developed so-called transient diagnostics:

I Upon some trigger, turn off feedback and start recording beam motion;
I Unstable motion grows from ever-present noise-floor level excitation;
I After an adjustable open-loop time period, turn feedback on;

I Resulting data set captures open-loop growth of the fastest unstable
modes and closed-loop damping;

I Used to characterize driving terms (impedances) and feedback
performance, optimize tuning.
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How Does One Characterize an Unstable System?

I Standard methods of characterization:
I Frequency domain — transfer function;
I Time domain — step/pulse response.

I These methods fail for unstable beam;
I In 1990s our group at SLAC developed so-called transient diagnostics:

I Upon some trigger, turn off feedback and start recording beam motion;
I Unstable motion grows from ever-present noise-floor level excitation;
I After an adjustable open-loop time period, turn feedback on;

I Resulting data set captures open-loop growth of the fastest unstable
modes and closed-loop damping;

I Used to characterize driving terms (impedances) and feedback
performance, optimize tuning.
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How Does One Characterize an Unstable System?

I Standard methods of characterization:
I Frequency domain — transfer function;
I Time domain — step/pulse response.

I These methods fail for unstable beam;
I In 1990s our group at SLAC developed so-called transient diagnostics:

I Upon some trigger, turn off feedback and start recording beam motion;
I Unstable motion grows from ever-present noise-floor level excitation;
I After an adjustable open-loop time period, turn feedback on;

I Resulting data set captures open-loop growth of the fastest unstable
modes and closed-loop damping;

I Used to characterize driving terms (impedances) and feedback
performance, optimize tuning.



Feedback

Introduction
Coupled-bunch Instabilities

Bunch-by-bunch
Feedback
Overview

Technology

PLS-II
Demonstration
Activities

Comparison With SPring-8
Setup

Grow/Damp Measurements

Tune Measurements

Bunch Cleaning

Summary

How Does One Characterize an Unstable System?

I Standard methods of characterization:
I Frequency domain — transfer function;
I Time domain — step/pulse response.

I These methods fail for unstable beam;
I In 1990s our group at SLAC developed so-called transient diagnostics:

I Upon some trigger, turn off feedback and start recording beam motion;
I Unstable motion grows from ever-present noise-floor level excitation;
I After an adjustable open-loop time period, turn feedback on;

I Resulting data set captures open-loop growth of the fastest unstable
modes and closed-loop damping;

I Used to characterize driving terms (impedances) and feedback
performance, optimize tuning.
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How Does One Characterize an Unstable System?

I Standard methods of characterization:
I Frequency domain — transfer function;
I Time domain — step/pulse response.

I These methods fail for unstable beam;
I In 1990s our group at SLAC developed so-called transient diagnostics:

I Upon some trigger, turn off feedback and start recording beam motion;
I Unstable motion grows from ever-present noise-floor level excitation;
I After an adjustable open-loop time period, turn feedback on;

I Resulting data set captures open-loop growth of the fastest unstable
modes and closed-loop damping;

I Used to characterize driving terms (impedances) and feedback
performance, optimize tuning.
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Summary

How Does One Characterize an Unstable System?

I Standard methods of characterization:
I Frequency domain — transfer function;
I Time domain — step/pulse response.

I These methods fail for unstable beam;
I In 1990s our group at SLAC developed so-called transient diagnostics:

I Upon some trigger, turn off feedback and start recording beam motion;
I Unstable motion grows from ever-present noise-floor level excitation;
I After an adjustable open-loop time period, turn feedback on;

I Resulting data set captures open-loop growth of the fastest unstable
modes and closed-loop damping;

I Used to characterize driving terms (impedances) and feedback
performance, optimize tuning.
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Summary

Horizontal Grow/damp Measurement

I At nominal ID gaps PLS-II is at the
threshold of horizontal resistive wall
instability;

I Taken with 4A EPU at 20 mm gap;
I Grow/damp at 300 mA, 40 ms growth

time;
I Only a resistive wall mode;
I Fit exponentials to growth and damping

amplitudes, fairly clean fits.
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Horizontal Grow/damp Measurement

I At nominal ID gaps PLS-II is at the
threshold of horizontal resistive wall
instability;

I Taken with 4A EPU at 20 mm gap;
I Grow/damp at 300 mA, 40 ms growth

time;
I Only a resistive wall mode;
I Fit exponentials to growth and damping

amplitudes, fairly clean fits.
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Horizontal Grow/damp Measurement

I At nominal ID gaps PLS-II is at the
threshold of horizontal resistive wall
instability;

I Taken with 4A EPU at 20 mm gap;
I Grow/damp at 300 mA, 40 ms growth

time;
I Only a resistive wall mode;
I Fit exponentials to growth and damping

amplitudes, fairly clean fits.
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Summary

Horizontal Grow/damp Measurement

I At nominal ID gaps PLS-II is at the
threshold of horizontal resistive wall
instability;

I Taken with 4A EPU at 20 mm gap;
I Grow/damp at 300 mA, 40 ms growth

time;
I Only a resistive wall mode;
I Fit exponentials to growth and damping

amplitudes, fairly clean fits.
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Horizontal Grow/damp Measurement
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I At nominal ID gaps PLS-II is at the
threshold of horizontal resistive wall
instability;

I Taken with 4A EPU at 20 mm gap;
I Grow/damp at 300 mA, 40 ms growth

time;
I Only a resistive wall mode;
I Fit exponentials to growth and damping

amplitudes, fairly clean fits.
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Growth Rate vs. EPU Gap

20 25 30 35 40 45 50
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Gap (mm)

G
ro

w
th

 r
a

te
 (

m
s−

1
)

Mode 469 growth rates vs. 4A EPU gap size

I Adjust 4A EPU from 45.34 to
20 mm gap;

I Resistive wall growth rates vs.
gap setting;

I Moderate growth rates, damping
is an order of magnitude faster;

I Taken with 7C SFA and 5C SFA
at minimal gap.
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Growth Rate vs. EPU Gap
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Mode 469 growth rates vs. 4A EPU gap size

I Adjust 4A EPU from 45.34 to
20 mm gap;

I Resistive wall growth rates vs.
gap setting;

I Moderate growth rates, damping
is an order of magnitude faster;

I Taken with 7C SFA and 5C SFA
at minimal gap.
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Growth Rate vs. EPU Gap
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Mode 469 growth rates vs. 4A EPU gap size

I Adjust 4A EPU from 45.34 to
20 mm gap;

I Resistive wall growth rates vs.
gap setting;

I Moderate growth rates, damping
is an order of magnitude faster;

I Taken with 7C SFA and 5C SFA
at minimal gap.
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Growth Rate vs. EPU Gap
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Mode 469 growth rates vs. 4A EPU gap size

I Adjust 4A EPU from 45.34 to
20 mm gap;

I Resistive wall growth rates vs.
gap setting;

I Moderate growth rates, damping
is an order of magnitude faster;

I Taken with 7C SFA and 5C SFA
at minimal gap.
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Vertical Grow/damp Measurement

I Grow/damp at 300 mA, 13 ms open loop;
I Increasing amplitudes towards the end of

the train, a wide band of modes point to
ion instability;

I A beating mess in time domain;
I RMS average of the envelopes make

more sense;
I Can even fit growth and damping rates;
I Short section at the start is roughly

exponential;
I Open loop time of 22 ms shows typical

ion behavior — motion saturates at low
amplitudes.
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Summary

Vertical Grow/damp Measurement

I Grow/damp at 300 mA, 13 ms open loop;
I Increasing amplitudes towards the end of

the train, a wide band of modes point to
ion instability;

I A beating mess in time domain;
I RMS average of the envelopes make

more sense;
I Can even fit growth and damping rates;
I Short section at the start is roughly

exponential;
I Open loop time of 22 ms shows typical

ion behavior — motion saturates at low
amplitudes.
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Vertical Grow/damp Measurement
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PLS−II vertical plane: modes 430 to 450

I Grow/damp at 300 mA, 13 ms open loop;
I Increasing amplitudes towards the end of

the train, a wide band of modes point to
ion instability;

I A beating mess in time domain;
I RMS average of the envelopes make

more sense;
I Can even fit growth and damping rates;
I Short section at the start is roughly

exponential;
I Open loop time of 22 ms shows typical

ion behavior — motion saturates at low
amplitudes.
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Vertical Grow/damp Measurement
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PLS−II vertical plane: rms average of modes 420 to 460

I Grow/damp at 300 mA, 13 ms open loop;
I Increasing amplitudes towards the end of

the train, a wide band of modes point to
ion instability;

I A beating mess in time domain;
I RMS average of the envelopes make

more sense;
I Can even fit growth and damping rates;
I Short section at the start is roughly

exponential;
I Open loop time of 22 ms shows typical

ion behavior — motion saturates at low
amplitudes.
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Vertical Grow/damp Measurement

I Grow/damp at 300 mA, 13 ms open loop;
I Increasing amplitudes towards the end of

the train, a wide band of modes point to
ion instability;

I A beating mess in time domain;
I RMS average of the envelopes make

more sense;
I Can even fit growth and damping rates;
I Short section at the start is roughly

exponential;
I Open loop time of 22 ms shows typical

ion behavior — motion saturates at low
amplitudes.
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Vertical Grow/damp Measurement
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I Grow/damp at 300 mA, 13 ms open loop;
I Increasing amplitudes towards the end of

the train, a wide band of modes point to
ion instability;

I A beating mess in time domain;
I RMS average of the envelopes make

more sense;
I Can even fit growth and damping rates;
I Short section at the start is roughly

exponential;
I Open loop time of 22 ms shows typical

ion behavior — motion saturates at low
amplitudes.
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Vertical Grow/damp Measurement

I Grow/damp at 300 mA, 13 ms open loop;
I Increasing amplitudes towards the end of

the train, a wide band of modes point to
ion instability;

I A beating mess in time domain;
I RMS average of the envelopes make

more sense;
I Can even fit growth and damping rates;
I Short section at the start is roughly

exponential;
I Open loop time of 22 ms shows typical

ion behavior — motion saturates at low
amplitudes.
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Summary

Single Bunch Instability
I High single bunch current leads to

coupling of dipole and head-tail modes
— transverse mode coupling instability
(TMCI);

I PLS-II vertical TMCI threshold is 4.3 mA;
I Feedback cannot affect the head-tail

modes, but damping of the dipole mode
is enough;

I A single-bunch grow/damp — feedback
turned off for camshaft bunch only;

I Fast growth, 0.5 ms open-loop time;
I High feedback gain means capture range

is limited;
I Feedback on at 0.6 ms only slows down

the growth.
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Summary

Single Bunch Instability
I High single bunch current leads to

coupling of dipole and head-tail modes
— transverse mode coupling instability
(TMCI);

I PLS-II vertical TMCI threshold is 4.3 mA;
I Feedback cannot affect the head-tail

modes, but damping of the dipole mode
is enough;

I A single-bunch grow/damp — feedback
turned off for camshaft bunch only;

I Fast growth, 0.5 ms open-loop time;
I High feedback gain means capture range

is limited;
I Feedback on at 0.6 ms only slows down

the growth.
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Summary

Single Bunch Instability
I High single bunch current leads to

coupling of dipole and head-tail modes
— transverse mode coupling instability
(TMCI);

I PLS-II vertical TMCI threshold is 4.3 mA;
I Feedback cannot affect the head-tail

modes, but damping of the dipole mode
is enough;

I A single-bunch grow/damp — feedback
turned off for camshaft bunch only;

I Fast growth, 0.5 ms open-loop time;
I High feedback gain means capture range

is limited;
I Feedback on at 0.6 ms only slows down

the growth.
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I High single bunch current leads to
coupling of dipole and head-tail modes
— transverse mode coupling instability
(TMCI);

I PLS-II vertical TMCI threshold is 4.3 mA;
I Feedback cannot affect the head-tail

modes, but damping of the dipole mode
is enough;

I A single-bunch grow/damp — feedback
turned off for camshaft bunch only;

I Fast growth, 0.5 ms open-loop time;
I High feedback gain means capture range

is limited;
I Feedback on at 0.6 ms only slows down

the growth.
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PLS−II: camshaft bunch grow/damp with loss

I High single bunch current leads to
coupling of dipole and head-tail modes
— transverse mode coupling instability
(TMCI);

I PLS-II vertical TMCI threshold is 4.3 mA;
I Feedback cannot affect the head-tail

modes, but damping of the dipole mode
is enough;

I A single-bunch grow/damp — feedback
turned off for camshaft bunch only;

I Fast growth, 0.5 ms open-loop time;
I High feedback gain means capture range

is limited;
I Feedback on at 0.6 ms only slows down

the growth.
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PLS−II: camshaft bunch grow/damp with loss

I High single bunch current leads to
coupling of dipole and head-tail modes
— transverse mode coupling instability
(TMCI);

I PLS-II vertical TMCI threshold is 4.3 mA;
I Feedback cannot affect the head-tail

modes, but damping of the dipole mode
is enough;

I A single-bunch grow/damp — feedback
turned off for camshaft bunch only;

I Fast growth, 0.5 ms open-loop time;
I High feedback gain means capture range

is limited;
I Feedback on at 0.6 ms only slows down

the growth.
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PLS−II: camshaft bunch growth rates vs. current

I Growth rates vs. camshaft bunch
current;

I Current is estimated from the
scope peak-to-peak amplitude;

I Steep rise in growth rates,
reaching 6 ms−1 at 7 mA —
180 turns;

I Reached 7.6 mA with the
demonstration setup;

I With a separate X and Y
processors (each driving four
amplifiers) one can expect to
reach even higher camshaft
currents.
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I Steep rise in growth rates,
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I Steep rise in growth rates,
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I Growth rates vs. camshaft bunch
current;

I Current is estimated from the
scope peak-to-peak amplitude;

I Steep rise in growth rates,
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PLS−II: camshaft bunch growth rates vs. current

I Growth rates vs. camshaft bunch
current;

I Current is estimated from the
scope peak-to-peak amplitude;

I Steep rise in growth rates,
reaching 6 ms−1 at 7 mA —
180 turns;

I Reached 7.6 mA with the
demonstration setup;

I With a separate X and Y
processors (each driving four
amplifiers) one can expect to
reach even higher camshaft
currents.
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Parasitic Tune Measurement

I Feedback in closed-loop
operation, both X and Y;

I Averaged beam spectrum (lower
right) shows two notches;

I These notches allows us to
perform parasitic tune
measurement.
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Steady State Spectra Under Feedback Control

∑ Error

Transverse position

DisturbancesDetection noise

Feedback Beam

I In transverse planes there are very
few steady-state disturbances;

I Instabilities are damped to the
noise floor;

I Spectrum is determined by the
detection noise and the feedback
loop response;

I Open loop transfer function L(ω)
peaks at beam resonance;

I Transfer gain from the detection
noise to the feedback input is

1
1+L(ω) ;

I Maximum attenuation at beam
resonance — a notch.
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I In transverse planes there are very
few steady-state disturbances;

I Instabilities are damped to the
noise floor;

I Spectrum is determined by the
detection noise and the feedback
loop response;

I Open loop transfer function L(ω)
peaks at beam resonance;

I Transfer gain from the detection
noise to the feedback input is

1
1+L(ω) ;

I Maximum attenuation at beam
resonance — a notch.
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I In transverse planes there are very
few steady-state disturbances;

I Instabilities are damped to the
noise floor;

I Spectrum is determined by the
detection noise and the feedback
loop response;

I Open loop transfer function L(ω)
peaks at beam resonance;

I Transfer gain from the detection
noise to the feedback input is

1
1+L(ω) ;

I Maximum attenuation at beam
resonance — a notch.
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I In transverse planes there are very
few steady-state disturbances;

I Instabilities are damped to the
noise floor;

I Spectrum is determined by the
detection noise and the feedback
loop response;

I Open loop transfer function L(ω)
peaks at beam resonance;

I Transfer gain from the detection
noise to the feedback input is

1
1+L(ω) ;

I Maximum attenuation at beam
resonance — a notch.
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Horizontal tune, capture stopped 22−Sep−2024 at 10:17
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Vertical tune

I Overnight capture of tune monitor at
1 Hz;

I Averaging time constant of around
30 s to mask injections;

I Observed an offset of ≈ 0.005
between the notch and the swept
spectrum analyzer measurement;

I This offset is due to the
amplitude-dependent tune shift,
since notch measurement happens
at much lower oscillation amplitudes.
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I Overnight capture of tune monitor at
1 Hz;

I Averaging time constant of around
30 s to mask injections;

I Observed an offset of ≈ 0.005
between the notch and the swept
spectrum analyzer measurement;

I This offset is due to the
amplitude-dependent tune shift,
since notch measurement happens
at much lower oscillation amplitudes.
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I Overnight capture of tune monitor at
1 Hz;

I Averaging time constant of around
30 s to mask injections;

I Observed an offset of ≈ 0.005
between the notch and the swept
spectrum analyzer measurement;

I This offset is due to the
amplitude-dependent tune shift,
since notch measurement happens
at much lower oscillation amplitudes.
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Single Bunch Phase Tracking

CORDIC

Aφ → IQ

A

φ

sin

cosz−1

Integrator and
range limiter

I

Q

CORDIC

IQ → Aφ

A

φ

Beam

Full scale

Phase accumulator

Beam excitation

Drive frequency

Drive amplitude
DDS-based sinusoidal drive generator

Drive frequency modulation

Phase shift setpoint

I

Q

sincos

DDC+CIC
Beam response

I A single bunch is excited with a sinusoidal excitation;
I Response is detected relative to the excitation to determine the phase

shift;
I In closed loop, phase tracker adjusts the excitation frequency to

maintain the desired phase shift value;
I Adjustable integration time, tracking range, loop gain.
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Fast Tune Tracking

I Optimized X tracking with 100 turns
decimation;

I One more shot;
I And another one;
I Downconvert to baseband to separate

amplitude and phase;
I We used fast tune tracking to establish

calibration.
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Fast tune tracking: amplitude
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Tracking frequency vs. time

I Optimized X tracking with 100 turns
decimation;

I One more shot;
I And another one;
I Downconvert to baseband to separate

amplitude and phase;
I We used fast tune tracking to establish

calibration.
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I Optimized X tracking with 100 turns
decimation;

I One more shot;
I And another one;
I Downconvert to baseband to separate

amplitude and phase;
I We used fast tune tracking to establish

calibration.
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I Optimized X tracking with 100 turns
decimation;

I One more shot;
I And another one;
I Downconvert to baseband to separate

amplitude and phase;
I We used fast tune tracking to establish

calibration.



Feedback

Introduction
Coupled-bunch Instabilities

Bunch-by-bunch
Feedback
Overview

Technology

PLS-II
Demonstration
Activities

Comparison With SPring-8
Setup

Grow/Damp Measurements

Tune Measurements

Bunch Cleaning

Summary

Outline

Introduction
Coupled-bunch Instabilities

Bunch-by-bunch Feedback
Overview
Technology

PLS-II Demonstration
Activities
Comparison With SPring-8 Setup
Grow/Damp Measurements
Tune Measurements
Bunch Cleaning



Feedback

Introduction
Coupled-bunch Instabilities

Bunch-by-bunch
Feedback
Overview

Technology

PLS-II
Demonstration
Activities

Comparison With SPring-8
Setup

Grow/Damp Measurements

Tune Measurements

Bunch Cleaning

Summary

Bunch Cleaning
I Bunch cleaning is done by iGp12 as

follows:
I Apply normal negative feedback to the

bunches we want to keep;
I Turn off the feedback for the bunches to

be removed;
I Apply sine or square wave excitation

with frequency sweeping to the bunches
we are cleaning.

I With two power amplifiers we barely had
enough kick to clean;

I Removed 3 bunches: 296, 299, 300;
I After cleaning optimization, with 9

bunches cleaned;
I Need optical diagnostics to characterize

bunch purity.
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bunch purity.
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I Successfully demonstrated Dimtel bunch-by-bunch feedback in PLS-II;
I Used one unit to control both X and Y planes;
I Demonstrated control of resistive wall and ion coupled-bunch

instabilities as well as control of TMCI (single-bunch instability);
I Demonstrated a number of advanced beam control and diagnostic

techniques, such as bunch cleaning, parasitic tune measurement, fast
tune tracking.
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