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Bunch passing through a resonant
structure excites a wakefield which is
sampled by the following bunches — a
coupling mechanism;

In practice the wakefields have much

longer damping times than illustrated
here;

Longitudinal bunch oscillation — phase
modulation of the wakefield — slope of
the wake voltage sampled by the
following bunches determines the
coupling.
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Bunch passing through a resonant
structure excites a wakefield which is
sampled by the following bunches — a
coupling mechanism;

In practice the wakefields have much
longer damping times than illustrated
here;

Longitudinal bunch oscillation — phase
modulation of the wakefield — slope of
the wake voltage sampled by the
following bunches determines the
coupling.

For certain combinations of wakefield
amplitudes and frequencies the overall
system becomes unstable.
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» A system of N bunches (coupled harmonic oscillators) has N
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» A system of N bunches (coupled harmonic oscillators) has N
eigenmodes;

» From symmetry considerations we find that the eigenmodes correspond
to Fourier vectors;

» Mode number m describes the number of oscillation periods over one
turn;

» Wakefields affect the modal eigenvalues in both real (growth rate) and
imaginary (oscillation frequency) parts;
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Coupled-bunch Instabilities: Eigenmodes and Eigenvalues

» A system of N bunches (coupled harmonic oscillators) has N
eigenmodes;

» From symmetry considerations we find that the eigenmodes correspond
to Fourier vectors;

» Mode number m describes the number of oscillation periods over one
turn;

» Wakefields affect the modal eigenvalues in both real (growth rate) and
imaginary (oscillation frequency) parts;

> Motion of bunch k oscillating in mode m is given by: A,,e/?™<m/Ng/mt
» A, — modal amplitude;
> A, — complex modal eigenvalue.
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Modal Oscillation E

Mode 1

xample

Mode 7

vVvyyvyy

Harmonic number of 8;
Top plot — mode 1;
Bottom — mode 7;

All bunches oscillate at the same
amplitude and frequency, but
different phases;

Cannot distinguish modes m and
N — m (or —m) from a single turn
shapshot.
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Modal Oscillation With Damping

Mode 1

Mode 7

» Same modes with damping.
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» Beam interacts with wakefields (impedances in frequency domain) at
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Bunch-by-bunch Feedback
Definition
In bunch-by-bunch feedback approach the actuator signal for a given bunch
depends only on the past motion of that bunch.

| |
| - \ Beam , Actuator =
_\é§___F>.____-_——.--___\ _____ é%———_%-
| - N | | \
|
|

»  Front—end #»{ Controller » Back—end

» Bunches are processed sequentially;

» Correction kicks are applied one or more turns later;
» Diagonal feedback — computationally efficient;

» Extremely popular in storage rings — why?
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MIMO Model of Bunch-by-bunch Feedback

o Beam dynamics o
S B Y1
G(w)
UN—-1 YN-1
" 1  Feedback |
) ;
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» N bunch positions and feedback kicks;
» Diagonal feedback matrix H(w)l;
» Invariant under coordinate transformations.
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MIMO Model of Bunch-by-bunch Feedback
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» Coordinate transformation to eigenmode basis;
» N feedback loops — one per mode;
» |dentical feedback applied to each mode.
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Beam Position Sensor

> To sense beam position we typically use

capacitive button beam position monitors
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A B
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with 100—400 ps duration;
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Beam Position Sensor

> To sense beam position we typically use

capacitive button beam position monitors
(BPMs);

» Buttons couple capacitively to the beam,
differentiating bunch current shape;

» BPM signals are wideband differentiated pulses
with 100—400 ps duration;

» Differentiation means sensor gain increases with
frequency.
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> First stage of BPM signal processing — separating X/Y/Z signals;
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> First stage of BPM signal processing — separating X/Y/Z signals;

» Since we are digitizing in the end, why not digitize raw signals?
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> First stage of BPM signal processing — separating X/Y/Z signals;

» Since we are digitizing in the end, why not digitize raw signals?

» For X and Y we are dealing with small differences of large signals;
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> First stage of BPM signal processing — separating X/Y/Z signals;
» Since we are digitizing in the end, why not digitize raw signals?
» For X and Y we are dealing with small differences of large signals;

» If we can reject the common-mode at 20—-30 dB level, that is also the
gain of low-noise amplifier we can use to improve sensitivity.
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» Front-end requirements:
» Low amplitude and phase noise;
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» Input bandpass filter is an analog FIR filter that replicates BPM pulse
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Analog Front-end Design

BPM hybrid Bandpass filter Variable LNA Mixer Lowpass filter
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Phase shifter

Frequency multiplier

» Front-end requirements:
» Low amplitude and phase noise;
» Wideband to ensure high isolation between neighboring bunches.

» Input bandpass filter is an analog FIR filter that replicates BPM pulse
with spacing, matched to detection LO period;
» Detection frequency choice:
» High frequencies for sensitivity;
» Must stay below the propagation cut-off frequency of the vacuum
chamber.
» Local oscillator adjusted for amplitude (transverse) or phase
(longitudinal) detection.
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Baseband Signal Processor Feedback

T‘rlggfers Control Temperature and
Fiducial interface supply monitoring oo
RF clock A

Coupled-bunch Instabilities

Y

Bunch-by-bunch
Feedback
Overview

Technology

Input, ADC > FPGA DAC Output PLS-II

Demonstration

Activities

\i

Comparison With SPring-8
Setup

Grow/Damp Measurements

Tune Measurements
‘ Bunch Cleaning
Acquisition |«e L Slow analog

. Summary
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» Block diagram of a type frequently seen in accelerator context: ADC,
FPGA, and DAC;




Baseband Signal Processor Feedback

Triggers Control Temperature and
Fiducial i itori
interface supply monitoring Introduction
RF clock A Coupled-bunch Instabilties
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Overview
Technology
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Activities
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Setup
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memory and dlgﬂal 1/0

» Block diagram of a type frequently seen in accelerator context: ADC,
FPGA, and DAC;

» ADC, DAC: 12—-14 bit, 500—-600 megasamples per second, 400 ps
rise/fall times;




Baseband Signal Processor Feedback

T_r s Control Temperature and

Fiducial interface supply monitoring oo

RF clock A Coupled-bunch Instabilities
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Feedback
Overview

Technology
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Setup
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Grow/Damp Measurements
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‘ Bunch Cleaning
Acquisition |«e L Slow analog

. Summary
memory and digital I/O

» Block diagram of a type frequently seen in accelerator context: ADC,
FPGA, and DAC;

» ADC, DAC: 12—-14 bit, 500—-600 megasamples per second, 400 ps
rise/fall times;

» FPGA implements algorithmically simple, but computationally intensive
processing.




Inside the FPGA

FIR filter
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Drive signal with bunch-by-bunch enable

demultiplexer

Downsampling
turn selector

chain

FIR filter
chain

FIR filter

chain

Uneven stepping
multiplexer

Adjustable
one turn delay

=

Three tap
kick shaper FIR

To the DAC

» Multiple filter chains to match FPGA processing rate to the bunch

crossing rate;
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Inside the FPGA Feedback
FIR filter
enable & coeff

chain
Uneven stepping
demultiplexer

Downsampling
turn selector

Introduction

Coul -bunch Instabilities
Drive signal with bunch-by-bunch enable Coupled-bunch Instabilitie:

Adjustable
one turn delay

FIR filter
chain

—
FIR filter Uneven stepping
chain multiplexer

FIR filter
chain

Bunch-by-bunch

Three tap To the DAC Feedback
kick shaper FIR
Overview

Technology

PLS-II
Demonstration

Activities
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FIR filter
chain

Comparison With SPring-8
Setup

Grow/Damp Measurements

Tune Measurements

» Multiple filter chains to match FPGA processing rate to the bunch
crossing rate; Summary

» Uneven stepping scheme — use groups of nand n+ 1 bunches to
make sure signal from a given bunch ends up in the same filter chain on
consecutive turns;




Inside the FPGA

chain
Uneven stepping
demultiplexer

Downsampling
turn selector

FIR filter
chain

—
FIR filter Uneven stepping
chain multiplexer

FIR filter
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» Multiple filter chains to match FPGA processing rate to the bunch
crossing rate;

» Uneven stepping scheme — use groups of nand n+ 1 bunches to
make sure signal from a given bunch ends up in the same filter chain on
consecutive turns;

» Bunch-by-bunch excitation and feedback enables;
» Back-end compensation.

Feedback

Introduction

Coupled-bunch Instabilities

Bunch-by-bunch
Feedback
Overview

Technology

PLS-II
Demonstration
Activities

Comparison With SPring-8
Setup

Grow/Damp Measurements
Tune Measurements
Bunch Cleaning

Summary




Feedback Filter

o
o

Ll

Coefficient
S

I
o
o

Twlu

Iy

10 15
Tap number
Gain at the tune: 20.4 dB

20

20
_. 10

o

< o

c

s

(U]

50

100
Frequency (kHz)

150

Phase at the tune: -96.3 degrees

200

50

100
Frequency (kHz)

» Requirements:
> Adjustable phase shift at the tune
frequency;
> DC rejection to get rid of constant orbit
offsets;
> Low group delay.
> Filter design approach — sample one
period of a sine wave;
> Group delay is % of oscillation period;
> Nicely parameterized, often close to
optimal.

» More sophisticated design methods are
required when large perturbations are
present or with variable beam
dynamics, etc.
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» Sensor (pickup);
» Analog front-end;
» Controller;

» Analog back-end;
» Actuator (kicker).
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» Longitudinal kickers are usually built as highly damped (low Q,
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» Longitudinal kickers are usually built as highly damped (low Q,
wideband) cavities at 1—-1.5 GHz;

» Baseband kick must be upconverted to the right frequency to drive
these;
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» Longitudinal kickers are usually built as highly damped (low Q,
wideband) cavities at 1—-1.5 GHz;

» Baseband kick must be upconverted to the right frequency to drive
these;

» Phase linearity is critical to maintain the same feedback for different
modes;
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» Longitudinal kickers are usually built as highly damped (low Q,
wideband) cavities at 1—-1.5 GHz; Summary
» Baseband kick must be upconverted to the right frequency to drive
these;
» Phase linearity is critical to maintain the same feedback for different
modes;

» Constant group-delay filters are used to create single-sideband
modulation to efficiently drive kicker cavity.
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Transverse Kicker

» 50 Q striplines driven differentially;
» Counter-propagating beam and kick signals;
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Transverse Kicker

» 50 Q striplines driven differentially;

» Counter-propagating beam and kick signals;

» For 2 ns bunch spacing maximum stripline length is 1 ns:
» Fill time of 1 ns;

» Beam propagation time of 1 ns;
» Longer striplines will couple the kick to neighboring bunches.
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» 50 Q striplines driven differentially;

1200
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» Counter-propagating beam and kick signals;
» For 2 ns bunch spacing maximum stripline length is 1 ns:
» Fill time of 1 ns;
» Beam propagation time of 1 ns;
» Longer striplines will couple the kick to neighboring bunches.

» Shorter striplines — better isolation, have smaller kick.
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Demonstration Summary
» Saturday, September 21:

>
>

>

v

Started from unpacking hardware around 11:15;

Connected A — C hybrid output to the front-end, iGp12 outputs to
amplifiers A and C;

Set up transverse feedback in X and Y by 14:00;

After lunch set up fast tune tracking to characterize tune variation;
Investigated observed offsets between spectrum analyzer and feedback
notch tune measurement methods.

Feedback

Introduction

Coupled-bunch Instabilities

Bunch-by-bunch
Feedback
Overview

Technology

PLS-II
Demonstration
Activities

Comparison With SPring-8
Setup

Grow/Damp Measurements
Tune Measurements
Bunch Cleaning

Summary
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Started from unpacking hardware around 11:15;

Connected A — C hybrid output to the front-end, iGp12 outputs to
amplifiers A and C;

Set up transverse feedback in X and Y by 14:00;

After lunch set up fast tune tracking to characterize tune variation;
Investigated observed offsets between spectrum analyzer and feedback
notch tune measurement methods.

» Sunday, September 22:

>
>
>

Reconfigured for an A/B comparison with the SPring-8 system;
Performed vertical and horizontal calibration;
Reconfigured the feedback input chain, recalibrated;

> Spent the rest of the day demonstrating bunch cleaning.
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Demonstration Summary

» Saturday, September 21:

» Started from unpacking hardware around 11:15;
» Connected A — C hybrid output to the front-end, iGp12 outputs to
amplifiers A and C;
» Set up transverse feedback in X and Y by 14:00;
» After lunch set up fast tune tracking to characterize tune variation;
» Investigated observed offsets between spectrum analyzer and feedback
notch tune measurement methods.
» Sunday, September 22:
»> Reconfigured for an A/B comparison with the SPring-8 system;
» Performed vertical and horizontal calibration;
» Reconfigured the feedback input chain, recalibrated;
> Spent the rest of the day demonstrating bunch cleaning.
» Monday, September 23:
» Configured the feedback to increase camshaft bunch current;

» Investigated transverse stability as a function of insertion device gaps;
> Left ring running overnight with 7 mA camshaft bunch.
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Hardware Used

» Three Dimtel units:
» iGp12 baseband processor;
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Hardware Used

» Three Dimtel units:
» iGp12 baseband processor;
» FBE-500LT analog front/back-end;
» BPMH-20-2G BPMH hybrid network.
» Used buttons A and C, adjustable delays to
compensate for cable length errors;
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Hardware Used

» Three Dimtel units:

» iGp12 baseband processor;
» FBE-500LT analog front/back-end;
» BPMH-20-2G BPMH hybrid network.

» Used buttons A and C, adjustable delays to

compensate for cable length errors;

» Only two amplifiers driven differentially: A and C.
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Modal Amplitudes, Horizontal Plane
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Modal Amplitudes, Horizontal Plane Feedback

a) Osc. Envelopes in Time Domain b) Evolution of Modes
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Modal Amplitudes, Horizontal Plane

a) Osc. Envelopes in Time Domain b) Evolution of Modes
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Modal Amplitudes, Horizontal Plane

a) Osc. Envelopes in Time Domain b) Evolution of Modes
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Modal Amplitudes, Vertical Plane

a) Osc. Envelopes in Time Domain

b) Evolution of Modes

w0 ‘ » Data filtered around vy,
BuchNo. 0 Tmems)  ModeNo. 00  Timems calibration applied;

Mean Mode Amplitudes
0.8 T T T T T

!
0 50 100 150 200 250 300 350 400 450
Mode No.

Feedback

Introduction

Coupled-t h Instabilities

Bunch-by-bunch
Feedback
Overview

Technology

PLS-II
Demonstration
Activities

Comparison With SPring-8
Setup

Grow/Damp Measurements
Tune Measurements

Bunch Cleaning

Summary




Modal Amplitudes, Vertical Plane

a) Osc. Envelopes in Time Domain

b) Evolution of Modes
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Modal Amplitudes, Vertical Plane
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Modal Amplitudes, Vertical Plane

a) Osc. Envelopes in Time Domain b) Evolution of Modes
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How Does One Characterize an Unstable System?

» Standard methods of characterization:

» Frequency domain — transfer function;
» Time domain — step/pulse response.
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How Does One Characterize an Unstable System?

» Standard methods of characterization:

» Frequency domain — transfer function;
» Time domain — step/pulse response.

» These methods fail for unstable beam;

» In 1990s our group at SLAC developed so-called transient diagnostics:
» Upon some trigger, turn off feedback and start recording beam motion;
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» Standard methods of characterization:

» Frequency domain — transfer function;
» Time domain — step/pulse response.

» These methods fail for unstable beam;
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How Does One Characterize an Unstable System?

» Standard methods of characterization:

» Frequency domain — transfer function;
» Time domain — step/pulse response.

» These methods fail for unstable beam;

» In 1990s our group at SLAC developed so-called transient diagnostics:

» Upon some trigger, turn off feedback and start recording beam motion;
» Unstable motion grows from ever-present noise-floor level excitation;
» After an adjustable open-loop time period, turn feedback on;
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How Does One Characterize an Unstable System?

» Standard methods of characterization:

» Frequency domain — transfer function;
» Time domain — step/pulse response.

» These methods fail for unstable beam;

» In 1990s our group at SLAC developed so-called transient diagnostics:

» Upon some trigger, turn off feedback and start recording beam motion;
» Unstable motion grows from ever-present noise-floor level excitation;
» After an adjustable open-loop time period, turn feedback on;

» Resulting data set captures open-loop growth of the fastest unstable
modes and closed-loop damping;
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How Does One Characterize an Unstable System?

» Standard methods of characterization:

» Frequency domain — transfer function;
» Time domain — step/pulse response.

» These methods fail for unstable beam;

» In 1990s our group at SLAC developed so-called transient diagnostics:

» Upon some trigger, turn off feedback and start recording beam motion;
» Unstable motion grows from ever-present noise-floor level excitation;
» After an adjustable open-loop time period, turn feedback on;

» Resulting data set captures open-loop growth of the fastest unstable
modes and closed-loop damping;

» Used to characterize driving terms (impedances) and feedback
performance, optimize tuning.
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Horizontal Grow/damp Measurement

a) Osc. Envelopes in Time Domain

b) Evolution of Modes
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» At nominal ID gaps PLS-Il is at the
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Horizontal Grow/damp Measurement

a) Osc. Envelopes in Time Domain
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» At nominal ID gaps PLS-Il is at the
threshold of horizontal resistive wall
instability;

» Taken with 4A EPU at 20 mm gap;
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Horizontal Grow/damp Measurement

a) Osc. Envelopes in Time Domain
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» At nominal ID gaps PLS-Il is at the
threshold of horizontal resistive wall
instability;

» Taken with 4A EPU at 20 mm gap;

» Grow/damp at 300 mA, 40 ms growth
time;
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Feedback

Horizontal Grow/damp Measurement

a) Osc. Envelopes in Time Domain b) Evolution of Modes

Introduction

Coupled-bunch Instabilities

\ Bunch-by-bunch
‘o Feedback

» At nominal ID gaps PLS-Il is at the

Technology
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Grow/Damp Measurements

» Grow/damp at 300 mA, 40 ms growth e Messromans
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Horizontal Grow/damp Measurement Feedback

Introduction

Coupled-bunch Instabilities

Bunch-by-bunch

Feedback
sep2324/162028 Data + Fit for Mode #469 > At nominal ID gaps PLS_II iS at the S;::::g/
threshold of horizontal resistive wall LS
|nStab|||ty Demonstration
> Taken with 4A EPU at 20 mm gap;

Grow/Damp Measurements

> Grow/damp at 300 mA, 40 ms growth [
time;

Summary

» Only a resistive wall mode;

; N S A » Fit exponentials to growth and damping
e () amplitudes, fairly clean fits.




Growth Rate vs. EPU Gap

Mode 469 growth rates vs. 4A EPU gap size
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Growth Rate vs. EPU Gap Feedback
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Growth Rate vs. EPU Gap Feedback

Introduction

Coupled-bunch Instabilities
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Growth Rate vs. EPU Gap Feedback

Introduction

Coupled-bunch Instabilities

o Mode 4‘369 growth ra(e‘s vs. 4A EPU g‘ap size Esggg-ai{(-bunch
Overview
o1 > Adjust 4A EPU from 45.34 to
PLS-II
0142 ° | 20 mm gap, Demonstration
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Vertical Grow/damp Measurement

a) Osc. Envelopes in Time Domain
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b) Evolution of Modes
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Vertical Grow/damp Measurement
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a) Osc. Envelopes in Time Domain

b) Evolution of Modes
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» Grow/damp at 300 mA, 13 ms open loop;

» Increasing amplitudes towards the end of
the train, a wide band of modes point to
ion instability;

Feedback

Introduction

Coupled-bunch Instabilities

Bunch-by-bunch
Feedback
Overview

Technology

PLS-II
Demonstration
Activities

Comparison With SPring-8
Setup

Grow/Damp Measurements
Tune M
Bunch

urements

aning

Summary




Vertical Grow/damp Measurement

» Grow/damp at 300 mA, 13 ms open loop;

» Increasing amplitudes towards the end of
the train, a wide band of modes point to
ion instability;

PLS-l vertical plane: modes 430 to 450

» A beating mess in time domain;

Amplitude (um)
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Vertical Grow/damp Measurement Feedback

> Grow/damp at 300 mA, 13 ms open loop; [l

Coupled-bunch Instabilities

> Increasing amplitudes towards the end of [kl

the train, a wide band of modes point to
ion instability;

» A beating mess in time domain;
» RMS average of the envelopes make '

Grow/Damp Measurements

more Sense, Tune Measurements

Bunch Cleaning

PLS-Il vertical plane: rms average of modes 420 to 460

PLS-II
Demonstration

Activities

Summary




Vertical Grow/damp Measurement

) Osc. Envelopes in Time Domain
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Grow/damp at 300 mA, 13 ms open loop;

Increasing amplitudes towards the end of
the train, a wide band of modes point to

ion instability;

A beating mess in time domain;
RMS average of the envelopes make

more sense;

Can even fit growth and damping rates;
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Vertical Grow/damp Measurement Feedback

Introduction

» Grow/damp at 300 mA, 13 ms open [00p; [EEE—_———-

» Increasing amplitudes towards the end of [l

the train, a wide band of modes point to

5ep2224/124435 Data + Fit for Mode #440

Technology
ion instability; S
. . . . Demonstration
» A beating mess in time domain;
Comparison With SPring-8
» RMS average of the envelopes make T
more Sense; Tune Measurements

Bunch Cleaning

» Can even fit growth and damping rates; ST

‘ ‘ ‘ » Short section at the start is roughly
" e exponential;




Vertical Grow/damp Measurement Feedback

Introduction

» Grow/damp at 300 mA, 13 ms open [00p; [EEE—_———-

a) Osc. Envelopes in Time Domain b) Evolution of Modes S |nC|’eaSIng amplItUdeS tOWS.I’dS the end of Esggg-al?;-bunch
the train, a wide band of modes point to
ion instability; LS
. . . . Demonstration
» A beating mess in time domain;
Bunch No Time (ms) Time (ms Cozpar\scn With SPring-8
o ™ » RMS average of the envelopes make o —

more Sense, Tune Measurements

Bunch Cleaning

» Can even fit growth and damping rates; ST

Mean Mode Amplitudes

» Short section at the start is roughly
;8

exponential;

» Open loop time of 22 ms shows typical
ion behavior — motion saturates at low
amplitudes.
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Single Bunch Instability

a) Osc. Envelopes in Time Domain

b) Evolution of Modes
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» High single bunch current leads to
coupling of dipole and head-tail modes
— transverse mode coupling instability
(TMCI);
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Feedback

Single Bunch Instability

a) Osc. Envelopes in Time Domain

b) Evolution of Modes

» High single bunch current leads to

Introduction

coupling of dipole and head-tail modes
, — transverse mode coupling instability Bu

(TMCI);
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Feedback

Single Bunch Instability

a) Osc. Envelopes in Time Domain

b) Evolution of Modes

» High single bunch current leads to

Introduction

coupling of dipole and head-tail modes
, — transverse mode coupling instability Bunch-by-bunch

1

(TMCI);
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Single Bunch Instability Foodozck

a) Osc. Envelopes in Time Domain b) Evolution of Modes . .
» High single bunch current leads to )
200 . . . Introduction
coupling of dipole and head-tail modes
o — transverse mode coupling instability Bu
o 200 o5 | (TMCI), Overview
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Single Bunch Instability Foodozck

» High single bunch current leads to

Introduction

coupling of dipole and head-tail modes
— transverse mode coupling instability Bunch-by-bunch
sep2324/|‘24733 Data, Fit and Error I?r Mode #0 — (TMCI); P
» PLS-II vertical TMCI threshold is 4.3 mA;
. Demonstration
] » Feedback cannot affect the head-tail

Comparison With SPring-8

modes, but damping of the dipole mode

Grow/Damp Measurements

/ h -
IS en ne Measurements
S ou g 5 er

Bunch Cleaning

» A single-bunch grow/damp — feedback Summary
turned off for camshaft bunch only;

= » Fast growth, 0.5 ms open-loop time;




Single Bunch Instability Foodozck

» High single bunch current leads to

Introduction

coupling of dipole and head-tail modes
— transverse mode coupling instability Bunch-by-bunch
‘ PLS—‘II camsrvaﬂbunc‘hgrow/z‘iampwn‘h\oss ‘ ‘ (TMCI), Overion

Technology

» PLS-II vertical TMCI threshold is 4.3 mA;

Demonstration

» Feedback cannot affect the head-tail

Comparison With SPring-8

modes, but damping of the dipole mode

Grow/Damp Measurements

i ; Tune Measurement;
is enough; e e

Bunch Cleaning

ADG counts

» A single-bunch grow/damp — feedback Summary
turned off for camshaft bunch only;

oo o2 s e +owsos b Fast growth, 0.5 ms open-loop time;

» High feedback gain means capture range
is limited;




Single Bunch Instability Foodozck

» High single bunch current leads to

Introduction

coupling of dipole and head-tail modes
— transverse mode coupling instability Bunch-by-bunch
‘ ‘ PLS—‘H camsr‘vaﬂbum?hgmw/diampwlt‘hIuss ‘ ‘ (TMCI), Overview
16l ] » PLS-II vertical TMCI threshold is 4.3 mA;
1af 1 . Demonstration
» Feedback cannot affect the head-talil
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Comparison With SPring-8

modes, but damping of the dipole mode

3

Grow/Damp Measurements

i ; Tune Measurement;
is enough; e e

Bunch Cleaning

A single-bunch grow/damp — feedback Summary
turned off for camshaft bunch only;

Vertical amplitude (arb. units)
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IS

N

» Fast growth, 0.5 ms open-loop time;

» High feedback gain means capture range
is limited;

» Feedback on at 0.6 ms only slows down
the growth.
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Growth Rate vs. Camshaft Current Feedback

> Growth rates vs. camshaft bunch [

Coupled-bunch Instabilities

PLS-II: camshaft bunch growth rates vs. current .
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Growth Rate vs. Camshaft Current Feedback

> Growth rates vs. camshaft bunch [

Coupled-bunch Instabilities

PLS-II: camshaft bunch growth rates vs. current .
6 ‘ ‘ : : current; Bunch-by-bunch
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P . . Technology
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Growth Rate vs. Camshaft Current

» Growth rates vs. camshaft bunch

PLS-II: camshaft bunch growth rates vs. current Cu rrent’

’ - » Current is estimated from the
scope peak-to-peak amplitude;

» Steep rise in growth rates,
reaching 6 ms~' at 7 mA —
180 turns;
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Growth Rate vs. Camshaft Current Feedback

> Growth rates vs. camshaft bunch [

Coupled-bunch Instabilities

PLS-II: camshaft bunch growth rates vs. current cu rrent! Esggg-a?i-bun(:h
7 T T T T T T . .
» Current is estimated from the
scope peak-to-peak amplitude; psi
» Steep rise in growth rates, Demonstration
rg reaChing 6 msf‘l at?7 mA — g:{rzsar\sanwlh SPring-8
& 180 turns; e T—
» Reached 7.6 mA with the -

Summary

demonstration setup;
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Growth Rate vs. Camshaft Current

PLS-II: camshaft bunch growth rates vs. current
7 T T T T T T

Growth rate (ms“)

4 45 5 55 6 6.5 7 75
Current (mA)

>

| 2

Growth rates vs. camshaft bunch
current;

Current is estimated from the
scope peak-to-peak amplitude;
Steep rise in growth rates,
reaching 6 ms~' at 7 mA —
180 turns;

Reached 7.6 mA with the
demonstration setup;

With a separate X and Y
processors (each driving four
amplifiers) one can expect to
reach even higher camshaft
currents.
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Outline Feedback
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Parasitic Tune Measurement
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» Feedback in closed-loop
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Parasitic Tune Measurement
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» Feedback in closed-loop
operation, both X and Y;

> Averaged beam spectrum (lower
right) shows two notches;
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Parasitic Tune Measurement Feedback
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Steady State Spectra Under Feedback Control

Detection noise

Feedback

Disturbances

Transverse position

| Beam

» In transverse planes there are very
few steady-state disturbances;

Feedback

Introduction

Coupled-bunch Instabilities

Bunch-by-bunch
Feedback
Overview

Technology

PLS-II
Demonstration
Activities

Comparison With SPring-8
Setup

Grow/Damp Measurements
Tune Measurements
Bunch Cleaning

Summary
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» In transverse planes there are very |QEEtiery

. Coupled-bunch Instabilities
few steady-state disturbances;
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> Instabilities are damped to the
noise floor;
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Steady State Spectra Under Feedback Control Focdback

> In transverse planes there are very [Ty
feW Steady-State dlsturbances’ oupled-bunch Instabilities

Bunch-by-bunch

> Instabilities are damped to the Feedback
noise floor;
PLS-II
Detection noise Disturbances | 2 Spectrum is determined by the Demonstration
detection noise and the feedback R
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Tune Measurements

Bunch Cleaning
Transverse position

Summary




Steady State Spectra Under Feedback Control Focdback

» In transverse planes there are very |QEEtiery

feW Steady_state dlStUI’banceS, Coupled-bunch Instabilities
’ | ‘ ‘ Bunch-by-bunch
> Instabilities are damped to the Feedback
noise floor;
: . PLS-II
z » Spectrum is determined by the Demonsiration
§ deteCtlon nOISe and the feedback g:{rzsar\scnwuh SPring-8
§ loop response; Trobesarenets
» Open loop transfer function L(w)

Summary

peaks at beam resonance;

84 015

i
0.2 0.25 0.3
Fractional frequency




Steady State Spectra Under Feedback Control Focdback

> In transverse planes there are very [Ty
few steady-state disturbances;

Bunch-by-bunch

> Instabilities are damped to the Foedoack
of 7 noise floor;
. . PLS-II
2 { > Spectrum is determined by the Demonsiration
g .l ] detection noise and the feedback Compatson win 5P
loop response; S
= » Open loop transfer function L(w) A
s ummary
: peaks at beam resonance;
o 1 » Transfer gain from the detection
-135 s oz o o noise to the feedback input is

Fraclional.irequency .

]
THL(w)’




Steady State Spectra Under Feedback Control Focdback

> In transverse planes there are very [Ty
few steady-state disturbances;

Bunch-by-bunch

> Instabilities are damped to the Foedoack
of 7 noise floor;
. . PLS-II
2 { > Spectrum is determined by the Demonsiration
g .l ] detection noise and the feedback Compatson win 5P
| loop response; e
= » Open loop transfer function L(w) A
s ummary
: peaks at beam resonance;
o 1 » Transfer gain from the detection
-135 s oz o o noise to the feedback input is

Fraclional.irequency .

)
T+L(w)’

» Maximum attenuation at beam
resonance — a notch.




Parasitic Tune Measurement Feedback

Horizontal tune, capture stopped 22-Sep-2024 at 10:17
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Parasitic Tune Measurement Feedback

Horizontal tune, capture stopped 22-Sep-2024 at 10:17

0.3692 )
Introduction
0.369 Coupled-bunch Instabilities
0.3688
. . Bunch-by-bunch
£ oeso | » Overnight capture of tune monitor at [
® I Overview
0.3684 .
é 1 HZ, Technology
S 0.3682f . .
0366 {  » Averaging time constant of around o ation
03678 ] 30 s to mask injections;
03676 ) ) ) ) ) . Comparison With SPring-8
Rt 12 -10 -8 -6 —4 -2 0 i
Time (hours) Grow/Damp Measurements
Tune Measurements
Bunch Cleaning
Vertical tune
0.1394 T T Summary
0.1392
0.139
;% 0.1388
% 0.1386
0.1384
0.1382
o -14 71‘2 4‘0 -4 7é 0




Parasitic Tune Measurement Feedback

Horizontal tune, capture stopped 22-Sep-2024 at 10:17
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Parasitic Tune Measurement

Horizontal tune, capture stopped 22-Sep-2024 at 10:17

a4 ~12 —10 -8 -6 —4 -2 0
Time (hours)

Vertical tune
0.1394 T T

0.1392

0.139

0.1388 ]

0.1386

Fractional tune

0.1384

0.1382

-8 -6
Time (hours)

Overnight capture of tune monitor at
1 Hz;

Averaging time constant of around
30 s to mask injections;

Observed an offset of ~ 0.005
between the notch and the swept
spectrum analyzer measurement;
This offset is due to the
amplitude-dependent tune shift,
since notch measurement happens

at much lower oscillation amplitudes.
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Single Bunch Phase Tracking Feedback

3 DDS-based sinusoidal drive generator

Prive amplitude A\: Introduction

Full scale R | Beam excitation Coupled-bunch Instabilities
: ——— 4 coroic Sin =X K

P . . O Bunch-by-bunch

1 Drive frequency - < > - < > -l o1 >4 A6 1Q cos ; Y Feedback
i 1 Overview
+ + T _Phase accumulator Beam Technology

Drive frequency modulation Y Y PLS-II

A [la—7 COS sin Demonstration
CORDIC Activities

DDC+CIC
Integrator and 6 1Q—46 Q Beam response golmpar\scn With SPring-8
range limiter elup
- Grow/Damp Measurements
+
Phase shift setpoint

Tune Measurements
» A single bunch is excited with a sinusoidal excitation;

> Response is detected relative to the excitation to determine the phase
shift;

» In closed loop, phase tracker adjusts the excitation frequency to
maintain the desired phase shift value;

» Adjustable integration time, tracking range, loop gain.

Bunch Cleaning

Summary
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Horizontal tracking: bunch 385, d=100, g=400, amp=0.25
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Fast Tune Tracking

Horizontal tracking: bunch 385, d=100, g=400, amp=0.25

Fractional tune

o 10 20 0 40 50 60 0 8

Time (ms)

» Optimized X tracking with 100 turns

decimation;
» One more shot;
» And another one;
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Fast Tune Tracking

Fast tune tracking: amplitude
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0. T T T
0 10 20 30 40 € 70 80 90 100

50
Time (ms)

» Optimized X tracking with 100 turns
decimation;

» One more shot;
» And another one;

» Downconvert to baseband to separate
amplitude and phase;
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Fast Tune Tracking Fosdback

Fast tune tracking: amplitude
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. » And another one; Tine Weasuremons

s  » Downconvert to baseband to separate Sur;ma'ry'
Time (ms) .
i amplitude and phase;
» We used fast tune tracking to establish
calibration.
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Fast Tune Tracking Fosdback

Fast tune tracking: amplitude Introduction

Coupled-bunch Instabilities

3

Bunch-by-bunch
Feedback

Overview

» Optimized X tracking with 100 turns
. . PLS-II
decimation; Demonstration

» One more shot; Comparison With SPring-8

Setup

Amplitude (ADC counts)
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Grow/Damp Measurements

» And another one; T

» Downconvert to baseband to separate -
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» We used fast tune tracking to establish

w : calibration.
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Bunch Cleaning
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» Bunch cleaning is done by iGp12 as
follows:

> Apply normal negative feedback to the
bunches we want to keep;
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Bunch Cleaning
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» Bunch cleaning is done by iGp12 as
follows:

> Apply normal negative feedback to the
bunches we want to keep;

» Turn off the feedback for the bunches to
be removed;
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Bunch Cleaning

ID=IGPF:TEST

BUHCH CLEBNIHNG
SAVED VALUE

AMPL ITUDE 0.5002
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» Bunch cleaning is done by iGp12 as
follows:

> Apply normal negative feedback to the
bunches we want to keep;

> Turn off the feedback for the bunches to
be removed;

> Apply sine or square wave excitation
with frequency sweeping to the bunches
we are cleaning.
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Bunch Cleaning Fodback

» Bunch cleaning is done by iGp12 as

Introduction
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> Apply normal negative feedback to the Bunch-by-bunch
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Feedback

Bunch Cleaning

» Bunch cleaning is done by iGp12 as

Introduction

follows: Goupled-bunch nstabifles
> Apply normal negative feedback to the Bunch-by-bunch
Bunch-by-bunch mean after cleaning 296, 299, 300 Feedback
: : ‘ bunches we want to keep; o——
» Turn off the feedback for the bunches to [
. PLS-II
be remqved! . . Demonstration
> Apply sine or square wave excitation Acies

Comparison With SPring-8

with frequency sweeping to the bunches [

. Grow/Damp Measurements
we are cleaning. e ra—

Bunch Cleaning

» With two power amplifiers we barely had [,
enough kick to clean;

o ®  » Removed 3 bunches: 296, 299, 300;

ADC counts
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Bunch Cleaning Fodback

» Bunch cleaning is done by iGp12 as
follows:

> Apply normal negative feedback to the Bunch-by-bunch
bunches we want to keep; o

Overview

» Turn off the feedback for the bunches to TR

Introduction

Coupled-bunch Instabilities

Bunch-by-bunch mean after cleaning 25, 53, 139, 140, 281, 291, 296, 299, 300

1400

1200

. PLS-II
1000 be remqved’ . . Demonstration
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S 800| . . Comparison With SPring-
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. Grow/Damp Measurements
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» Removed 3 bunches: 296, 299, 300;

» After cleaning optimization, with 9
bunches cleaned;
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Bunch Cleaning

ADC counts

Bunch-by-bunch mean after cleaning 25, 53, 139, 140, 281, 291, 296, 299, 300

1400

1200

1000

800

0 100 2 30
Bunch number

400

500

» Bunch cleaning is done by iGp12 as
follows:

> Apply normal negative feedback to the
bunches we want to keep;

> Turn off the feedback for the bunches to
be removed;

> Apply sine or square wave excitation
with frequency sweeping to the bunches
we are cleaning.

» With two power amplifiers we barely had
enough kick to clean;

» Removed 3 bunches: 296, 299, 300;

» After cleaning optimization, with 9
bunches cleaned;

» Need optical diagnostics to characterize
bunch purity.
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Summary

» Successfully demonstrated Dimtel bunch-by-bunch feedback in PLS-II;
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Summary

» Successfully demonstrated Dimtel bunch-by-bunch feedback in PLS-II;
» Used one unit to control both X and Y planes;
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Summary

» Successfully demonstrated Dimtel bunch-by-bunch feedback in PLS-II;
» Used one unit to control both X and Y planes;

» Demonstrated control of resistive wall and ion coupled-bunch
instabilities as well as control of TMCI (single-bunch instability);
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Summary

» Successfully demonstrated Dimtel bunch-by-bunch feedback in PLS-II;
» Used one unit to control both X and Y planes;

» Demonstrated control of resistive wall and ion coupled-bunch
instabilities as well as control of TMCI (single-bunch instability);
» Demonstrated a number of advanced beam control and diagnostic

techniques, such as bunch cleaning, parasitic tune measurement, fast
tune tracking.
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