

iGp

Single Buncl Setup

Bunch Trai Measurements

Even Fill Mea surements

Model Comparisor

Transverse Measurements

Summary

Longitudinal Instabilities in CESR-TA

M. Billing¹, J. Codner¹, R. Meller¹, M. Palmer¹, J. Sikora¹, J. Flanagan², M. Tobiyama² D. Teytelman³, et al.

¹Cornell University, Ithaca, NY 14850, USA
²KEK, Tsukuba, Japan
³Dimtel, Inc., San Jose, CA, 95124, USA

January 26, 2009

Outline

iGp

- Single Bunc Setup
- Bunch Trair Measurements
- Even Fill Measurements
- Model Comparison
- Transverse Measurements
- Summary

- Bunch Train Measurements
- Even Fill Measurements
 - Model Comparison
- 5

2

Transverse Measurements

▲□▶▲□▶▲□▶▲□▶ □ のQ@



Front-end Calibration

iGp

Single Bunch Setup

- Bunch Trai Measurements
- Even Fill Mea surements
- Model Comparisor
- Transverse Measurements
- Summary

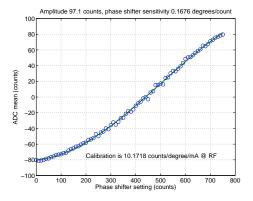
- Move front-end phase shifter;
- Record average of the filled bunch;
- Performed automatically using "sweep" script;
- Slope around zero crossing is the calibration factor.

・ロト ・ 同ト ・ ヨト ・ ヨ

Front-end Calibration

iGp

Single Bunch Setup


Bunch Trai Measurements

Even Fill Mea surements

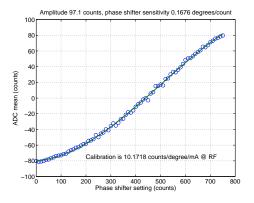
Model Comparisor

Transverse Measurements

Summary

- Move front-end phase shifter;
- Record average of the filled bunch;
- Performed automatically using "sweep" script;
- Slope around zero crossing is the calibration factor.

・ロト ・ 同ト ・ ヨト ・ ヨ



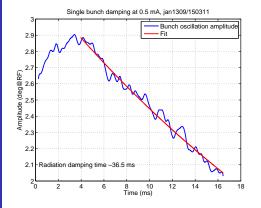
Front-end Calibration

iGp

Single Bunch Setup

- Bunch Trai Measurements
- Even Fill Mea surements
- Model Comparisor
- Transverse Measurements
- Summary

- Move front-end phase shifter;
- Record average of the filled bunch;
- Performed automatically using "sweep" script;
- Slope around zero crossing is the calibration factor.



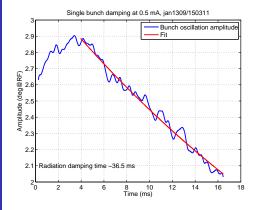
Radiation Damping Measurement

Single Bunch Setup

- Bunch Train Measurements
- Even Fill Mea surements
- Model Comparisor
- Transverse Measurements
- Summary

- Use positive feedback to excite the beam;
- Feedback goes to open loop at 4 ms;
- Estimated radiation damping time is 36.5 ms;
- Computed value is 28.2 ms.

・ロト ・ 同ト ・ ヨト ・ ヨ



Radiation Damping Measurement

Single Bunch Setup

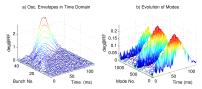
- Bunch Train Measurements
- Even Fill Mea surements
- Model Comparison
- Transverse Measurements
- Summary

- Use positive feedback to excite the beam;
- Feedback goes to open loop at 4 ms;
- Estimated radiation damping time is 36.5 ms;
- Computed value is 28.2 ms.

・ロット (雪) (日) (日)

iGp

Single Bunc Setup


Bunch Train Measurements

Even Fill Measurements

Model Comparisor

Transverse Measurements

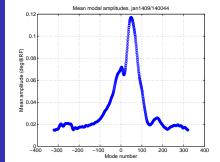
Summary

CESR TA:jan1409/140044: lo= 28.5mA, Dsamp= 8, ShifGain= 4, Nbun= 45, At Fs: G1= 5.1618, G2= 0, Ph1= 105.3491, Ph2= 0, Brkpt= 711, Calib= 8.2572.

Open-loop growth - first 14 ms;

- Spectrum is dominated by a band of modes around 49;
- Feedback turns on too late:
 - growth continues after 14 ms;
- Damping in the end;
- Growth rate of 0.23 ms⁻¹;
- Damping of 0.12 ms⁻¹.

(日) (字) (日) (日) (日)


iGp

Single Bunc Setup

Bunch Train Measurements

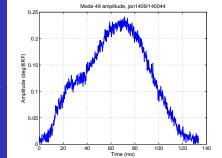
Even Fill Measurements

- Model Compariso
- Transverse Measurements
- Summary

- Open-loop growth first 14 ms;
- Spectrum is dominated by a band of modes around 49;
- Feedback turns on too late:
 - growth continues after 14 ms;

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Damping in the end;
- Growth rate of 0.23 ms⁻¹;
- Damping of 0.12 ms⁻¹.


iGp

Single Buncl Setup

Bunch Train Measurements

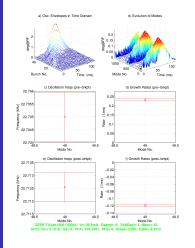
Even Fill Measurements

- Model Compariso
- Transverse Measurements
- Summary

- Open-loop growth first 14 ms;
- Spectrum is dominated by a band of modes around 49;
- Feedback turns on too late:
 - growth continues after 14 ms;

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Damping in the end;
- Growth rate of 0.23 ms⁻¹;
- Damping of 0.12 ms^{-1} .


iGp

Single Buncl Setup

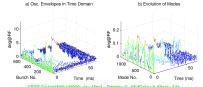
Bunch Train Measurements

Even Fill Mea surements

- Model Compariso
- Transverse Measurements
- Summary

- Open-loop growth first 14 ms;
- Spectrum is dominated by a band of modes around 49;
- Feedback turns on too late:
 - growth continues after 14 ms;
- Damping in the end;
- Growth rate of 0.23 ms⁻¹;
- Damping of 0.12 ms⁻¹.

(日) (字) (日) (日) (日)



iGp

- Single Bunch Setup
- Bunch Trair Measurements

Even Fill Measurements

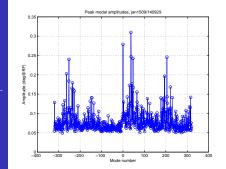
- Model Comparisor
- Transverse Measurements
- Summary

CESR TA:jan1509/140929: Io= 46mA, Dsamp= 8, ShifGain= 5, Nbun= 641, At Fs: G1= 0, G2= 10.3235, Ph1= 0, Ph2= 105.3491, Brkpt= 1, Calib= 8.2572.

- Roughly uniform filling in 599 RF buckets;
- Use positive feedback to excite the motion;
- Modal spectrum is relatively narrow
- 1–3 mode bands;
- Fit the open-loop damping;
- A puzzle damping rates are faster than radiation damping (0.029 ms⁻¹ measured, 0.036 ms⁻¹ computed).

iGp

Single Buncl Setup


Bunch Trai Measurements

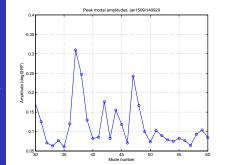
Even Fill Measurements

Model Comparisor

Transverse Measurements

Summary

- Roughly uniform filling in 599 RF buckets;
- Use positive feedback to excite the motion;
- Modal spectrum is relatively narrow
- 1–3 mode bands;
- Fit the open-loop damping;
- A puzzle damping rates are faster than radiation damping (0.029 ms⁻¹ measured, 0.036 ms⁻¹ computed).



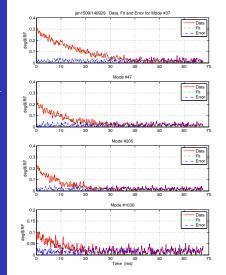
iGp

- Single Buncl Setup
- Bunch Train Measurements

Even Fill Measurements

- Model Comparisor
- Transverse Measurements
- Summary

- Roughly uniform filling in 599 RF buckets;
- Use positive feedback to excite the motion;
- Modal spectrum is relatively narrow
- 1-3 mode bands;
- Fit the open-loop damping;
- A puzzle damping rates are faster than radiation damping (0.029 ms⁻¹ measured, 0.036 ms⁻¹ computed).



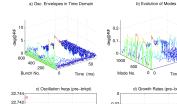
iGp

- Single Buncl Setup
- Bunch Train Measurements

Even Fill Measurements

- Model Comparisor
- Transverse Measurements
- Summary

- Roughly uniform filling in 599 RF buckets;
- Use positive feedback to excite the motion;
- Modal spectrum is relatively narrow
- 1-3 mode bands;
- Fit the open-loop damping;
- A puzzle damping rates are faster than radiation damping (0.029 ms⁻¹ measured, 0.036 ms⁻¹ computed).

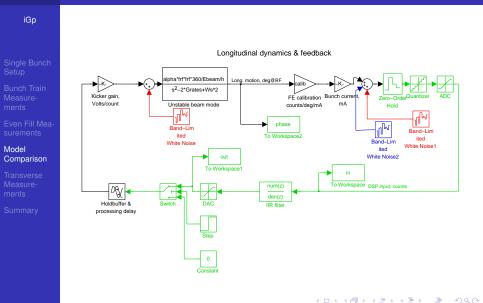


iGp

- Single Bunch Setup
- Bunch Trai Measurements

Even Fill Measurements

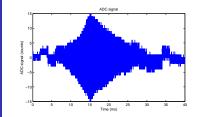
- Model Comparison
- Transverse Measurements
- Summary

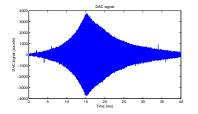

Time (ms) d) Growth Rates (pre-brkpt) 22.742 -0.02 (KHz) 22.74 窗 -0.04 22.738 Ē _0.06 22.736 -0.08 22.734 -0 22.732 22.73 1000 1000 1500 Mode No CESR TA:lan1509/140929: lo= G1=0 G2=10.2225 Ph1=0

- Roughly uniform filling in 599 RF buckets;
- Use positive feedback to excite the motion;
- Modal spectrum is relatively narrow
- 1–3 mode bands;
- Fit the open-loop damping;
- A puzzle damping rates are faster than radiation damping (0.029 ms⁻¹ measured, 0.036 ms⁻¹ computed).

ヘロト ヘ戸ト ヘヨト ヘヨ

Beam/Feedback Model





Simulated grow/damp transient

iGp

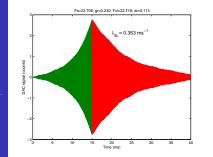
- Single Bunc Setup
- Bunch Trai Measurements
- Even Fill Mea surements
- Model Comparison
- Transverse Measurements
- Summary

- Estimate kicker voltage based on known quantities;
- For clean grow/damp data remove back-end saturation;
- Fit growth and damping transients;
- Damping is also compared to the analytical formula $\lambda_{\rm fb} = \frac{\alpha e f_{\rm ff}^2}{2 E f_s h} G_{\rm fb};$
- Estimated kicker voltage is 42 V (expect 178 V).

Simulated grow/damp transient

iGp

Single Bunc Setup


Bunch Trair Measurements

Even Fill Mea surements

Model Comparison

Transverse Measurements

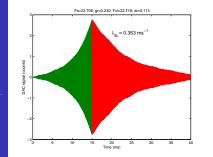
Summary

- Estimate kicker voltage based on known quantities;
- For clean grow/damp data remove back-end saturation;
- Fit growth and damping transients;
- Damping is also compared to the analytical formula $\lambda_{\rm fb} = \frac{\alpha \theta_{\rm fr}^2}{2Ef_{\rm s}h} G_{\rm fb};$
- Estimated kicker voltage is 42 V (expect 178 V).

Simulated grow/damp transient

iGp

Single Bunc Setup


Bunch Trair Measurements

Even Fill Mea surements

Model Comparison

Transverse Measurements

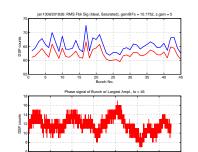
Summary

- Estimate kicker voltage based on known quantities;
- For clean grow/damp data remove back-end saturation;
- Fit growth and damping transients;
- Damping is also compared to the analytical formula $\lambda_{\rm fb} = \frac{\alpha e f_{\rm ff}^2}{2E f_s h} G_{\rm fb};$
- Estimated kicker voltage is 42 V (expect 178 V).

Kicker Voltage Discrepancy

iGp

Single Bund Setup


Bunch Train Measurements

Even Fill Mea surements

Model Comparison

Transverse Measurements

Summary

Ideal and Stausted FB tigrate of Burch of Lapper Ampt.

Feedback is running partially saturated;

 Low-frequency mode at 1.014 GHz - TWT amplifier gain drop around 1 GHz;

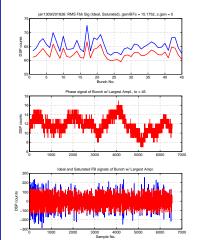
• Feedback setup optimization?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Kicker Voltage Discrepancy

iGp

Single Bund Setup


Bunch Train Measurements

Even Fill Mea surements

Model Comparison

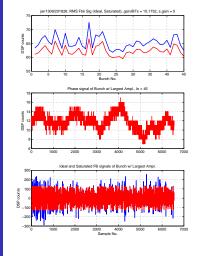
Transverse Measurements

Summary

- Feedback is running partially saturated;
- Low-frequency mode at 1.014 GHz - TWT amplifier gain drop around 1 GHz;

・ロン ・四 と ・ 日 と ・ 日

• Feedback setup optimization?


Kicker Voltage Discrepancy

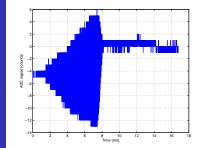
iGp

- Single Bund Setup
- Bunch Train Measurements
- Even Fill Mea surements

Model Comparison

- Transverse Measurements
- Summary

- Feedback is running partially saturated;
- Low-frequency mode at 1.014 GHz - TWT amplifier gain drop around 1 GHz;

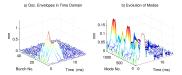

・ロト ・ 四ト ・ ヨト ・ ヨ

• Feedback setup optimization?

iGp

- Single Bunc Setup
- Bunch Train Measurements
- Even Fill Mea surements
- Model Compariso
- Transverse Measurements
- Summary

- Single-bunch positive feedback - beam lost;
- Multibunch drive/damp;
- Mean mode amplitudes during growth transient;
- Not the lowest frequency, expected from resistive wall.


・ロト ・ 同ト ・ ヨト ・ ヨ

iGp

- Single Buncl Setup
- Bunch Train Measurements
- Even Fill Measurements
- Model Comparisor
- Transverse Measurements

Summary

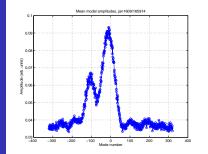
CESR TA:jan1609/161748: lo= 17mA, Dsamp= 1, ShifGain= 5, Nbun= 45, At Fs: G1= 161.5358, G2= 161.5358, Ph1= -118.7965, Ph2= 61.2035, Brkpt= 817, Calib= 8.2572.

- Single-bunch positive feedback beam lost;
- Multibunch drive/damp;
- Mean mode amplitudes during growth transient;
- Not the lowest frequency, expected from resistive wall.

・ロト ・ 同ト ・ ヨト ・ ヨ

iGp

Single Buncl Setup

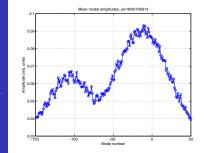

Bunch Train Measurements

Even Fill Measurements

Model Comparisor

Transverse Measurements

Summary


- Single-bunch positive feedback beam lost;
- Multibunch drive/damp;
- Mean mode amplitudes during growth transient;
- Not the lowest frequency, expected from resistive wall.

・ロット (雪) (日) (日) (日)

iGp

- Single Buncl Setup
- Bunch Train Measurements
- Even Fill Mea surements
- Model Comparisor
- Transverse Measurements
- Summary

- Single-bunch positive feedback - beam lost;
- Multibunch drive/damp;
- Mean mode amplitudes during growth transient;
- Not the lowest frequency, expected from resistive wall.

(日) (字) (日) (日) (日)

iGp

- Single Buncl Setup
- Bunch Trair Measurements
- Even Fill Measurements
- Model Comparisor
- Transverse Measurements

Summary

- We have demonstrated longitudinal feedback with both electron and positron beams;
- Multiple impedances are at play longitudinally;
- Estimated kicker voltage is low, even fill puzzle;
- Still, for current operating conditions the setup is sufficient;
- Successfully demonstrated feedback operation in the vertical plane.

iGp

- Single Bunc Setup
- Bunch Trair Measurements
- Even Fill Measurements
- Model Comparisor
- Transverse Measurements

Summary

- We have demonstrated longitudinal feedback with both electron and positron beams;
- Multiple impedances are at play longitudinally;
- Estimated kicker voltage is low, even fill puzzle;
- Still, for current operating conditions the setup is sufficient;
- Successfully demonstrated feedback operation in the vertical plane.

iGp

- Single Bunc Setup
- Bunch Trair Measurements
- Even Fill Measurements
- Model Comparisor
- Transverse Measurements

Summary

- We have demonstrated longitudinal feedback with both electron and positron beams;
- Multiple impedances are at play longitudinally;
- Estimated kicker voltage is low, even fill puzzle;
- Still, for current operating conditions the setup is sufficient;
- Successfully demonstrated feedback operation in the vertical plane.

iGp

- Single Bunc Setup
- Bunch Trair Measurements
- Even Fill Measurements
- Model Comparisor
- Transverse Measurements

Summary

- We have demonstrated longitudinal feedback with both electron and positron beams;
- Multiple impedances are at play longitudinally;
- Estimated kicker voltage is low, even fill puzzle;
- Still, for current operating conditions the setup is sufficient;
- Successfully demonstrated feedback operation in the vertical plane.

iGp

- Single Bunc Setup
- Bunch Trair Measurements
- Even Fill Measurements
- Model Comparisor
- Transverse Measurements

Summary

- We have demonstrated longitudinal feedback with both electron and positron beams;
- Multiple impedances are at play longitudinally;
- Estimated kicker voltage is low, even fill puzzle;
- Still, for current operating conditions the setup is sufficient;
- Successfully demonstrated feedback operation in the vertical plane.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・