LLRF Characterization

Stability Measurements

Precision Measurements

Dimtel Digital Low-level RF

D. Teytelman

Dimtel, Inc., San Jose, CA, USA

June 14, 2019

Overview •oo LLRF Characterization

Stability Measurements

Precision Measurements

Outline

Overview

- LLRF9 Introduction
- Inputs and Interlocks
- Feedback Loops
- Diagnostics
- 2 LLRF Characterization
 - Frequency Domain
 - Time Domain
- Stability Measurements
 Thermal
- Precision Measurements
 - Tuning Scans
 - Beam-Based Calibration

LLRF Characterization

Stability Measurements

Precision Measurements

LLRF9 System

• A single 2U chassis;

- 9 input RF channels;
- 2 output RF channels:
 - Amplified;
 - Filtered;
 - Interlocked.
- Two spare outputs.

- Tuner motor control;
- External interlock daisy-chain;
- Two external trigger inputs;
- Eight opto-isolated baseband ADC channels.

LLRF Characterization

Stability Measurements

Precision Measurements

LLRF9 System

- A single 2U chassis;
- 9 input RF channels;
- 2 output RF channels:
 - Amplified;
 - Filtered;
 - Interlocked.
- Two spare outputs.

- Tuner motor control;
- External interlock daisy-chain;
- Two external trigger inputs;
- Eight opto-isolated baseband ADC channels.

LLRF Characterization

Stability Measurements

Precision Measurements

LLRF9 System

- A single 2U chassis;
- 9 input RF channels;
- 2 output RF channels:
 - Amplified;
 - Filtered;
 - Interlocked.
- Two spare outputs.

- Tuner motor control;
- External interlock daisy-chain;
- Two external trigger inputs;
- Eight opto-isolated baseband ADC channels.

LLRF Characterization

Stability Measurements

Precision Measurements

LLRF9 System

- A single 2U chassis;
- 9 input RF channels;
- 2 output RF channels:
 - Amplified;
 - Filtered;
 - Interlocked.
- Two spare outputs.

- Tuner motor control;
- External interlock daisy-chain;
- Two external trigger inputs;
- Eight opto-isolated baseband ADC channels.

LLRF Characterization

Stability Measurements

Precision Measurements

LLRF9 System

- A single 2U chassis;
- 9 input RF channels;
- 2 output RF channels:
 - Amplified;
 - Filtered;
 - Interlocked.
- Two spare outputs.

• Tuner motor control;

- External interlock daisy-chain;
- Two external trigger inputs;
- Eight opto-isolated baseband ADC channels.

LLRF Characterization

Stability Measurements

Precision Measurements

LLRF9 System

- A single 2U chassis;
- 9 input RF channels;
- 2 output RF channels:
 - Amplified;
 - Filtered;
 - Interlocked.
- Two spare outputs.

- Tuner motor control;
- External interlock daisy-chain;
- Two external trigger inputs;
- Eight opto-isolated baseband ADC channels.

LLRF Characterization

Stability Measurements

Precision Measurements

LLRF9 System

- A single 2U chassis;
- 9 input RF channels;
- 2 output RF channels:
 - Amplified;
 - Filtered;
 - Interlocked.
- Two spare outputs.

- Tuner motor control;
- External interlock daisy-chain;
- Two external trigger inputs;
- Eight opto-isolated baseband ADC channels.

LLRF Characterization

Stability Measurements

Precision Measurements

LLRF9 System

- A single 2U chassis;
- 9 input RF channels;
- 2 output RF channels:
 - Amplified;
 - Filtered;
 - Interlocked.
- Two spare outputs.

- Tuner motor control;
- External interlock daisy-chain;
- Two external trigger inputs;
- Eight opto-isolated baseband ADC channels.

LLRF Characterization

Stability Measurements

Precision Measurements

Installations and Demos

Machines

Ring	Stations	Cavities
ELSA	1	2
ANKA	2	4
ANKA booster	1	1
SESAME	4	4
SESAME booster	1	1
Diamond booster (demo)	1	1
LNLS (demo)	2	2
LNLS booster (demo)	1	1

- System is in daily operation at 3 storage rings and 2 boosters;
- Successfully demonstrated at 3 other rings;
- Commissioning in DELTA later this year.

Stability Measurements

Precision Measurements

Installations and Demos

Machines

Ring	Stations	Cavities
ELSA	1	2
ANKA	2	4
ANKA booster	1	1
SESAME	4	4
SESAME booster	1	1
Diamond booster (demo)	1	1
LNLS (demo)	2	2
LNLS booster (demo)	1	1

- System is in daily operation at 3 storage rings and 2 boosters;
- Successfully demonstrated at 3 other rings;
- Commissioning in DELTA later this year.

Stability Measurements

Precision Measurements

Installations and Demos

Machines

Ring	Stations	Cavities
ELSA	1	2
ANKA	2	4
ANKA booster	1	1
SESAME	4	4
SESAME booster	1	1
Diamond booster (demo)	1	1
LNLS (demo)	2	2
LNLS booster (demo)	1	1

- System is in daily operation at 3 storage rings and 2 boosters;
- Successfully demonstrated at 3 other rings;
- Commissioning in DELTA later this year.

LLRF Characterization

Stability Measurements

Precision Measurements

Outline

- LLRF9 Introduction
- Inputs and Interlocks
- Feedback Loops
- Diagnostics
- 2 LLRF Characterization
 - Frequency Domain
 - Time Domain
- Stability Measurements
 Thermal
- Precision Measurements
 - Tuning Scans
 - Beam-Based Calibration

Stability Measurements

Precision Measurements

Calibrated Channels

ID=LLE1:BRD1	HELP EXIT			
INPUT CHANNEL 0 CAVITY 1 PROBE				
RAW AMPLITUDE	0.1 counts			
RAW PHASE	34.5			
HW FULL SCALE	0.86 dBm			
HW PHASE OFFSET	-31.28 deg			
COUPL ING	PHASE OFFSET			
66.00 db	(160.000 deg			
OUTPUT FORMAT	UNITS			
Voltage Power	kv			
TRIP				
TRIP RESET	500.00 kv			
0.01 kV	163.17 deg			

• Each of 9 input channels is monitored at 10 SPS;

- Phase measurements are relative to the master oscillator phase reference at the front panel;
- All RF components are mounted on a 10 mm cold plate with active temperature stabilization;
- Each channel can be configured for voltage or power measurements;
- Precision calibration procedures have been developed.

Stability Measurements

Precision Measurements

Calibrated Channels

ID=LLE1:BRD1	HELP EXIT			
INPUT CHANNEL 0 CAVITY 1 PROBE				
RAW AMPLITUDE	0.1 counts			
RAW PHASE HW FULL SCALE	34.5 0.86 dBm			
HW PHASE OFFSET	-31.28 deg			
COUPLING 66.00 db	PHASE OFFSET			
OUTPUT FORMAT	UNITS			
Voltage Power	kv			
TRIP				
TRIP RESET	500.00 kv			
0.01 kV	163.17 deg			

- Each of 9 input channels is monitored at 10 SPS;
- Phase measurements are relative to the master oscillator phase reference at the front panel;
- All RF components are mounted on a 10 mm cold plate with active temperature stabilization;
- Each channel can be configured for voltage or power measurements;
- Precision calibration procedures have been developed.

Stability Measurements

Precision Measurements

Calibrated Channels

ID=LLE1:BRD1	HELP EXIT				
INPUT CH	INPUT CHANNEL 0				
RAW AMPLITUDE	0.1 counts				
RAW PHASE	34.5				
HW FULL SCALE	0.86 dBm				
HW PHASE OFFSET	-31.28 deg				
COUPL ING	PHASE OFFSET				
66.00 db	(160.000 deg				
OUTPUT FORMAT	UNITS				
Voltage Power	kv				
TRIP					
TRIP RESET	500.00 kv				
0.01 kV	163.17 deg				

- Each of 9 input channels is monitored at 10 SPS;
- Phase measurements are relative to the master oscillator phase reference at the front panel;
- All RF components are mounted on a 10 mm cold plate with active temperature stabilization;
- Each channel can be configured for voltage or power measurements;
- Precision calibration procedures have been developed.

Stability Measurements

Precision Measurements

Calibrated Channels

ID=LLE1:BRD1	HELP EXIT			
INPUT CHANNEL 0 CAVITY 1 PROBE				
RAW AMPLITUDE	0.1 counts			
RAW PHASE HW FULL SCALE	34.5 0.86 dBm			
HW PHASE OFFSET	-31.28 deg			
COUPLING 66.00 ds	PHASE OFFSET			
OUTPUT FORMAT	UNITS			
Voltage Power	kv			
TRIP				
RESET	500.00 kv			
0.01 kV	163.17 deg			

- Each of 9 input channels is monitored at 10 SPS;
- Phase measurements are relative to the master oscillator phase reference at the front panel;
- All RF components are mounted on a 10 mm cold plate with active temperature stabilization;
- Each channel can be configured for voltage or power measurements;
- Precision calibration procedures have been developed.

・ロット (雪) (日) (日)

Stability Measurements

Precision Measurements

Calibrated Channels

ID=LLE1:BRD1	HELP EXIT				
INPUT CH	INPUT CHANNEL 0				
RAW AMPLITUDE	0.1 counts				
RAW PHASE	34.5				
HW FULL SCALE	0.86 dBm				
HW PHASE OFFSET	-31.28 deg				
COUPL ING	PHASE OFFSET				
66.00 db	(160.000 deg				
OUTPUT FORMAT	UNITS				
Voltage Power	kv				
TRIP					
TRIP RESET	500.00 kv				
0.01 kV	163.17 deg				

- Each of 9 input channels is monitored at 10 SPS;
- Phase measurements are relative to the master oscillator phase reference at the front panel;
- All RF components are mounted on a 10 mm cold plate with active temperature stabilization;
- Each channel can be configured for voltage or power measurements;
- Precision calibration procedures have been developed.

Stability Measurements

Precision Measurements

Interlock Chain

ID=LLRF: BRD1 EXIT				
INTERLOCKS				
EXTERNAL INTERLOCK INPUT ENABLE MASK				
AMPLITUDE	340.74 kV	305.41 kV	625.42 kW	
THRESHOLD	380.00 kv	340.00 kV	780.00 kv	
RAW AMPLITUDE	6364.5 counts	5952.9 counts	6207.6 counts	6098.0 counts
RAW THRESHOLD	7098	6627	6932	8191
EXTERNAL	CHANNEL O	CHANNEL 1	CHANNEL 2	CHANNEL 3
RESET	RESET	RESET	RESET	RESET
5782454	36046144	36067981	92105109	
TRIP CAPTURE	7122	6671	6957	
TRIP VALUE	381.30 kV	342.26 kV	785.54 kw	

- Fast interlock threshold can be set for each of 9 RF inputs;
- Guaranteed trip in a few hundred nanoseconds;
- Drive outputs doubly protected:
 - On interlock trip, an RF switch is opened;
 - FPGA DAC drive is set to zero.

・ロット (雪) (日) (日)

Stability Measurements

Precision Measurements

Interlock Chain

ID=LLRF: BRD1 HELP EXIT				
INTERLOCKS				
EXTERNAL INTERLOCK INPUT ENABLE MASK				
AMPLITUDE	340.74 kV	305.41 kV	625.42 kW	
THRESHOLD	380.00 kv	340.00 kV	780.00 kv	
RAW AMPLITUDE	6364.5 counts	5952.9 counts	6207.6 counts	6098.0 counts
RAW THRESHOLD	7098	6627	6932	8191
EXTERNAL	CHANNEL O	CHANNEL 1	CHANNEL 2	CHANNEL 3
RESET	RESET	RESET	RESET	RESET
5782454	36046144	36067981	92105109	
TRIP CAPTURE	7122	6671	6957	
TRIP VALUE	381.30 kv	342.26 kv	785.54 kw	

- Fast interlock threshold can be set for each of 9 RF inputs;
- Guaranteed trip in a few hundred nanoseconds;
- Drive outputs doubly protected:
 - On interlock trip, an RF switch is opened;
 - FPGA DAC drive is set to zero.

・ロット (雪) (日) (日)

Stability Measurements

Precision Measurements

Interlock Chain

ID=LLRF: BRD1 HELP EXIT				
INTERLOCKS				
EXTERNAL INTERLOCK INPUT ENABLE MASK				
AMPLITUDE	340.74 kV	305.41 kV	625.42 kW	
THRESHOLD	380.00 kv	340.00 kV	780.00 kv	
RAW AMPLITUDE	6364.5 counts	5952.9 counts	6207.6 counts	6098.0 counts
RAW THRESHOLD	7098	6627	6932	8191
EXTERNAL	CHANNEL O	CHANNEL 1	CHANNEL 2	CHANNEL 3
RESET	RESET	RESET	RESET	RESET
5782454	36046144	36067981	92105109	
TRIP CAPTURE	7122	6671	6957	
TRIP VALUE	381.30 kv	342.26 kv	785.54 kw	

- Fast interlock threshold can be set for each of 9 RF inputs;
- Guaranteed trip in a few hundred nanoseconds;
- Drive outputs doubly protected:
 - On interlock trip, an RF switch is opened;
 - FPGA DAC drive is set to zero.

LLRF Characterization

Stability Measurements

Precision Measurements

Interlock Chain - Continued

LLRF	HELP EXIT
INTERLOCK STATUS	RESET
TRIP SOURCE	TIME
CAVITY 1 PROBE1	0.000 us
CAVITY 2 PROBE1	384.022 us
Board 1 interlock Board 2 interlock B	Board 3 interlock

- External interlock enable input and interlock output allow for easy daisy-chaining:
 - Opto-isolated input;
 - 5 volt logic and solid-state relay output.
- All interlock sources are timestamped;
- IOC automatically sorts events to simplify

rip diagnostics.

LLRF Characterization

Stability Measurements

Precision Measurements

Interlock Chain - Continued

LLRF	HELP
INTERLOCK STATUS	RESET
TRIP SOURCE	TIME
CAVITY 1 PROBE1	0.000 us
CAVITY 2 PROBE1	384.022 us
Board 1 interlock Board 2 interlock	oard 3 interlock

- External interlock enable input and interlock output allow for easy daisy-chaining:
 - Opto-isolated input;
 - 5 volt logic and solid-state relay output.
- All interlock sources are timestamped;
- IOC automatically sorts events to simplify trip diagnostics

LLRF Characterization

Stability Measurements

Precision Measurements

Interlock Chain - Continued

LLRF	HELP EXIT
INTERLOCK STATUS	RESET
TRIP SOURCE	TIME
CAVITY 1 PROBE1	0.000 us
CAVITY 2 PROBE1	384.022 us
Board 1 interlock Board 2 interlock B	oard 3 interlock

- External interlock enable input and interlock output allow for easy daisy-chaining:
 - Opto-isolated input;
 - 5 volt logic and solid-state relay output.
- All interlock sources are timestamped;
- IOC automatically sorts events to simplify trip diagnostics.

LLRF Characterization

Stability Measurements

Precision Measurements

Outline

- LLRF9 Introduction
- Inputs and Interlocks
- Feedback Loops
- Diagnostics
- 2 LLRF Characterization
 - Frequency Domain
 - Time Domain
- Stability Measurements
 Thermal
- Precision Measurements
 - Tuning Scans
 - Beam-Based Calibration

Stability Measurements

Precision Measurements

Field Control Loop

Single cavity or vector sum of two;

- Reference phase is compensated in real-time;
- Proportional and integral loops;

- Double rate DAC drive;
- 512-point amplitude and phase profiles;
- Excitation input for built-in network analyzer.

Stability Measurements

Precision Measurements

Field Control Loop

- Single cavity or vector sum of two;
- Reference phase is compensated in real-time;
- Proportional and integral loops;

- Double rate DAC drive;
- 512-point amplitude and phase profiles;
- Excitation input for built-in network analyzer.

Stability Measurements

Precision Measurements

Field Control Loop

- Single cavity or vector sum of two;
- Reference phase is compensated in real-time;
- Proportional and integral loops;

- Double rate DAC drive;
- 512-point amplitude and phase profiles;
- Excitation input for built-in network analyzer.

Stability Measurements

Precision Measurements

Field Control Loop

- Single cavity or vector sum of two;
- Reference phase is compensated in real-time;
- Proportional and integral loops;

- Double rate DAC drive;
- 512-point amplitude and phase profiles;
- Excitation input for built-in network analyzer.

Stability Measurements

Precision Measurements

Field Control Loop

- Single cavity or vector sum of two;
- Reference phase is compensated in real-time;
- Proportional and integral loops;

- Double rate DAC drive;
- 512-point amplitude and phase profiles;
- Excitation input for built-in network analyzer.

Stability Measurements

Precision Measurements

Field Control Loop

- Single cavity or vector sum of two;
- Reference phase is compensated in real-time;
- Proportional and integral loops;

- Double rate DAC drive;
- 512-point amplitude and phase profiles;
- Excitation input for built-in network analyzer.

Tuner Loop

LLRF Characterization

Stability Measurements

Precision Measurements

LLRF : T	UNER:C1	HEL	PEXIT
TUNER LOOP			
LOOP CONT	ROL	0pen	Closed
PROP	INT	DIFF	ANTI WINDUP
5.0	j 1.5	0.0	-0.1
DEADBAND	ND (0.100 degrees		degrees
MINIMUM FORWARD POWER			
LOAD ANGLE OFFSET 0.00 degrees			
LOOP SIGN - ERROR 0.022			
Tuner 1 Motor Control			
Tumer 2 Motor Control			
Probe balancing loop			

• Loop runs in the EPICS IOC at 10 Hz;

- Keeps cavity forward and probe phases aligned;
- Options for one or two motors per cavity, field balancing loop for multi-cell cavities;
- Adjustable deadband to avoid unnecessary mechanical wear.

Tuner Loop

LLRF Characterization

Stability Measurements

Precision Measurements

LLRF : T	UNER: C1		HELP	EXIT
TUNER LOOP				
LOOP CONTROL		0p	en	Closed
PROP	INT	DI	FF	ANTI WINDUP
5.0]1.5	<u>)</u> 0.0		F0.1
DEADBAND		0.100 degrees		legrees
MINIMUM FORWARD POWER				
LOAD ANGLE OFFSET 0.00 degrees				
LOOP SIGN - ERROR 0.022				
Tuner 1 Motor Control				
Tumer 2 Motor Control				
Probe balancing loop				

- Loop runs in the EPICS IOC at 10 Hz;
- Keeps cavity forward and probe phases aligned;
- Options for one or two motors per cavity, field balancing loop for multi-cell cavities;
- Adjustable deadband to avoid unnecessary mechanical wear.

Tuner Loop

LLRF Characterization

Stability Measurements

Precision Measurements

LLRF:T	UNER: C1	HELF	EXIT
-			
	TUNER	FOOD	
LOOP CONT	ROL	Open	Closed
PROP	INT	DIFF	ANTI WINDUP
5.0]1.5	0.0	F0.1
DEADBAND		0.100 degrees	
MINIMUM FORWARD POWER			
LOAD ANGLE OFFSET			
LOOP SIGN	+ -	ERROR	0.022
🖵 Tuner 1 Motor Control			
Tuner 2 Motor Control			
Derobe balancing loop			

- Loop runs in the EPICS IOC at 10 Hz;
- Keeps cavity forward and probe phases aligned;
- Options for one or two motors per cavity, field balancing loop for multi-cell cavities;
- Adjustable deadband to avoid unnecessary mechanical wear.

Tuner Loop

LLRF Characterization

Stability Measurements

Precision Measurements

LLRF : TU	INER:C1	HELF	P EXIT
	TUNER	LOOP	
LOOP CONT	ROL	Open	Closed
PROP	INT	DIFF	ANTI WINDUP
5.0	j1.5	0.0	-0.1
DEADBAND		0.100	degrees
MINIMUM FORWARD POWER			
LOAD ANGLE OFFSET			
LOOP SIGN	• •	ERROR	0.022
🖵 Tuner 1 Motor Control			
Tuner 2 Motor Control			
Probe balancing loop			

- Loop runs in the EPICS IOC at 10 Hz;
- Keeps cavity forward and probe phases aligned;
- Options for one or two motors per cavity, field balancing loop for multi-cell cavities;
- Adjustable deadband to avoid unnecessary mechanical wear.

LLRF Characterization

Stability Measurements

Precision Measurements

ID=LLE1:C1T1	HELP EXIT
GALIL DMC-21X3 STREAM DEVICE	
VELOCITY COMMAND	0.000 deg/s
ENCODER POSITION	315691.920 deg
ENCODER VELOCITY	0.000 deg/s
ANALOG INPUT	-5.549 V
MOVING ENABLE I	DIR COWLIN OWLIN
• •	см 😑 😑
DISABLE ENABLE	STATUS 0x6D

- LLRF9 supports a number of off-the-shelf motor controllers:
 - Galil DMC-21X3 stepper/brushed DC/brushless;
 - Schneider Electric Motion Mdrive Plus stepper;
 - Aerotech Soloist brushed DC.
- Interfaces include Ethernet, RS-485, RS-422;
- Plunger position monitoring from analog potentiometer;
- Standard support for limit switches;
- EPICS MotorRecord is supported, not recommended

LLRF Characterization

Stability Measurements

Precision Measurements

ID=LLE1:C1T1	HELP EXIT
GALIL DMC-21X3 STREAM DEVICE	
VELOCITY COMMAND	0.000 deg/s
ENCODER POSITION	315691.920 deg
ENCODER VELOCITY	0.000 deg/s
ANALOG INPUT	-5.549 V
MOVING ENABLE I	DIR COWLIN OWLIN
• •	см 😑 😑
DISABLE ENABLE	STATUS 0x6D

- LLRF9 supports a number of off-the-shelf motor controllers:
 - Galil DMC-21X3 stepper/brushed DC/brushless;
 - Schneider Electric Motion Mdrive Plus stepper;
 - Aerotech Soloist brushed DC.
- Interfaces include Ethernet, RS-485, RS-422;
- Plunger position monitoring from analog potentiometer;
- Standard support for limit switches;
- EPICS MotorRecord is supported, not recommended

LLRF Characterization

Stability Measurements

Precision Measurements

ID=LLE1:C1T1	HELP EXIT	
GALIL DMC-21X3 STREAM DEVICE		
VELOCITY COMMAND	0.000 deg/s	
ENCODER POSITION	315691.920 deg	
ENCODER VELOCITY	0.000 deg/s	
ANALOG INPUT	-5.549 V	
MOVING ENABLE I	DIR COWLIN OWLIN	
• •	см 😑 😑	
DISABLE ENABLE	STATUS 0x6D	

- LLRF9 supports a number of off-the-shelf motor controllers:
 - Galil DMC-21X3 stepper/brushed DC/brushless;
 - Schneider Electric Motion Mdrive Plus stepper;
 - Aerotech Soloist brushed DC.
- Interfaces include Ethernet, RS-485, RS-422;
- Plunger position monitoring from analog potentiometer;
- Standard support for limit switches;
- EPICS MotorRecord is supported, not recommende

LLRF Characterization

Stability Measurements

Precision Measurements

ID=LLE1:C1T1	HELP EXIT	
GALIL DMC-21X3 STREAM DEVICE		
VELOCITY COMMAND	0.000 deg/s	
ENCODER POSITION	315691.920 deg	
ENCODER VELOCITY	0.000 deg/s	
ANALOG INPUT	-5.549 V	
MOVING ENABLE I	DIR COWLIN OWLIN	
• •	см 😑 😑	
DISABLE ENABLE	STATUS 0x6D	

- LLRF9 supports a number of off-the-shelf motor controllers:
 - Galil DMC-21X3 stepper/brushed DC/brushless;
 - Schneider Electric Motion Mdrive Plus stepper;
 - Aerotech Soloist brushed DC.
- Interfaces include Ethernet, RS-485, RS-422;
- Plunger position monitoring from analog potentiometer;
- Standard support for limit switches;
- EPICS MotorRecord is supported, not recommende

Stability Measurements

Precision Measurements

ID=LLRF:C1T1	HELP EXIT	
MOTOR RECORD		
POSITION (DEG)	F6607.06	
RELATIVE VALUE (DEG)	. 00	
VELOCITY (DEG/S)	5000.00	
ACCELERATION TIME (S)	0.040	
DIRECTION OF TRAVEL	0	
RAW MOTOR POSITION	-939567	
READBACK VALUE (DEG)	-6606.33047	
ANALOG INPUT	986	
DONE MOVING LOW LIM HI LIM		
•••		

- LLRF9 supports a number of off-the-shelf motor controllers:
 - Galil DMC-21X3 stepper/brushed DC/brushless;
 - Schneider Electric Motion Mdrive Plus stepper;
 - Aerotech Soloist brushed DC.
- Interfaces include Ethernet, RS-485, RS-422;
- Plunger position monitoring from analog potentiometer;
- Standard support for limit switches;
- EPICS MotorRecord is supported, not recommended.

Stability Measurements

Precision Measurements

Outline

- LLRF9 Introduction
- Inputs and Interlocks
- Feedback Loops
- Diagnostics
- 2 LLRF Characterization
 - Frequency Domain
 - Time Domain
- Stability Measurements
 Thermal
- Precision Measurements
 - Tuning Scans
 - Beam-Based Calibration

Stability Measurements

Precision Measurements

ADC Waveform Capture

- 12 ADC channels sampling IF signals (9 inputs, 3 references);
- 24576 sample buffer;
- 10 updates per second in free running mode;
- Multiple hardware trigger sources:
 - External trigger;
 - Ramp profile start;
 - Interlock.
- Supports pre-trigger acquisition for trip capture.

Stability Measurements

Precision Measurements

ADC Waveform Capture

- 12 ADC channels sampling IF signals (9 inputs, 3 references);
- 24576 sample buffer;
- 10 updates per second in free running mode;
- Multiple hardware trigger sources:
 - External trigger;
 - Ramp profile start;
 - Interlock.
- Supports pre-trigger acquisition for trip capture.

Stability Measurements

Precision Measurements

ADC Waveform Capture

- 12 ADC channels sampling IF signals (9 inputs, 3 references);
- 24576 sample buffer;
- 10 updates per second in free running mode;
- Multiple hardware trigger sources:
 - External trigger;
 - Ramp profile start;
 - Interlock.
- Supports pre-trigger acquisition for trip capture.

Stability Measurements

Precision Measurements

ADC Waveform Capture

ID=LLRF:BRD1 HELP EXIT	
ACQUISITION CONTROLS	
POST-TRIGGER LENGTH]16384
CH2/CH3 WAVEFORM	ADC2/ADC3
TRIGGER SELECT	SOFTWARE
	HARDWARE
HARDWARE TRIGGER	RAMP 🗆

- 12 ADC channels sampling IF signals (9 inputs, 3 references);
- 24576 sample buffer;
- 10 updates per second in free running mode;
- Multiple hardware trigger sources:
 - External trigger;
 - Ramp profile start;
 - Interlock.
- Supports pre-trigger acquisition for trip capture.

Stability Measurements

Precision Measurements

ADC Waveform Capture

ID=LLRF:BRD1 HELP EXIT	
ACQUISITION CONTROLS	
POST-TRIGGER LENGTH]16384
CH2/CH3 WAVEFORM	ADC2/ADC3
TRIGGER SELECT	SOFTWARE
	HARDWARE
HARDWARE TRIGGER	RAMP 🗆

- 12 ADC channels sampling IF signals (9 inputs, 3 references);
- 24576 sample buffer;
- 10 updates per second in free running mode;
- Multiple hardware trigger sources:
 - External trigger;
 - Ramp profile start;
 - Interlock.
- Supports pre-trigger acquisition for trip capture.

Stability Measurements

Precision Measurements

Network Analyzer

High resolution (1024 point) swept analyzer;

- Adjustable excitation level;
- Fast sweep times with proprietary carrier suppression algorithm;
- Multiple probe points within the system:
 - Cavity probe;
 - Cavity sum;
 - Error signal;
 - Drive output.
- Spectrum analyzer mode with excitation disabled.

Stability Measurements

Precision Measurements

Network Analyzer

- High resolution (1024 point) swept analyzer;
- Adjustable excitation level;
- Fast sweep times with proprietary carrier suppression algorithm;
- Multiple probe points within the system:
 - Cavity probe;
 - Cavity sum;
 - Error signal;
 - Drive output.
- Spectrum analyzer mode with excitation disabled.

Stability Measurements

Precision Measurements

Network Analyzer

- High resolution (1024 point) swept analyzer;
- Adjustable excitation level;
- Fast sweep times with proprietary carrier suppression algorithm;
- Multiple probe points within the system:
 - Cavity probe;
 - Cavity sum;
 - Error signal;
 - Drive output.
- Spectrum analyzer mode with excitation disabled.

Stability Measurements

Precision Measurements

Network Analyzer

- High resolution (1024 point) swept analyzer;
- Adjustable excitation level;
- Fast sweep times with proprietary carrier suppression algorithm;
- Multiple probe points within the system:
 - Cavity probe;
 - Cavity sum;
 - Error signal;
 - Drive output.
- Spectrum analyzer mode with excitation disabled.

Stability Measurements

Precision Measurements

Network Analyzer

- High resolution (1024 point) swept analyzer;
- Adjustable excitation level;
- Fast sweep times with proprietary carrier suppression algorithm;
- Multiple probe points within the system:
 - Cavity probe;
 - Cavity sum;
 - Error signal;
 - Drive output.
- Spectrum analyzer mode with excitation disabled.

LLRF Characterization

Stability Measurements

Precision Measurements

Outline

Overview

- LLRF9 Introduction
- Inputs and Interlocks
- Feedback Loops
- Diagnostics
- 2 LLRF Characterization
 - Frequency Domain
 - Time Domain
- Stability Measurements
 Thermal
- Precision Measurements
 - Tuning Scans
 - Beam-Based Calibration

LLRF Characterization

Stability Measurements

Precision Measurements

Open Loop Transfer Function

Measured from setpoint to the cavity probe;

- Feedback block in open loop has no dynamics, just gain and phase shift;
- Open loop cavity response;
- Fit resonator model to extract gain, loaded *Q*,
- Extremely useful for configuring the feedback loops, tuner loops, general diagnostics.

LLRF Characterization

Stability Measurements

Precision Measurements

Open Loop Transfer Function

- Measured from setpoint to the cavity probe;
- Feedback block in open loop has no dynamics, just gain and phase shift;
- Open loop cavity response;
- Fit resonator model to extract gain, loaded *Q*,
- Extremely useful for configuring the feedback loops, tuner loops, general diagnostics.

LLRF Characterization

Stability Measurements

Precision Measurements

Open Loop Transfer Function

- Measured from setpoint to the cavity probe;
- Feedback block in open loop has no dynamics, just gain and phase shift;
- Open loop cavity response;
- Fit resonator model to extract gain, loaded *Q*,
- Extremely useful for configuring the feedback loops, tuner loops, general diagnostics.

LLRF Characterization

Stability Measurements

Precision Measurements

Open Loop Transfer Function

- Measured from setpoint to the cavity probe;
- Feedback block in open loop has no dynamics, just gain and phase shift;
- Open loop cavity response;
- Fit resonator model to extract gain, loaded *Q*,
- Extremely useful for configuring the feedback loops, tuner loops, general diagnostics.

LLRF Characterization

Stability Measurements

Precision Measurements

Closed Loop Transfer Functions

Measured from setpoint to the error signal;

- Shows attenuation at frequencies where feedback has gain;
- Perturbations at the input of the cavity are rejected with the same transfer function;
- Proportional only;
- Proportional and integral, much higher rejection at low frequencies;
- Easier to see with the logarithmic frequency scale.

LLRF Characterization

Stability Measurements

Precision Measurements

- Measured from setpoint to the error signal;
- Shows attenuation at frequencies where feedback has gain;
- Perturbations at the input of the cavity are rejected with the same transfer function;
- Proportional only;
- Proportional and integral, much higher rejection at low frequencies;
- Easier to see with the logarithmic frequency scale.

LLRF Characterization

Stability Measurements

Precision Measurements

- Measured from setpoint to the error signal;
- Shows attenuation at frequencies where feedback has gain;
- Perturbations at the input of the cavity are rejected with the same transfer function;
- Proportional only;
- Proportional and integral, much higher rejection at low frequencies;
- Easier to see with the logarithmic frequency scale.

LLRF Characterization

Stability Measurements

Precision Measurements

- Measured from setpoint to the error signal;
- Shows attenuation at frequencies where feedback has gain;
- Perturbations at the input of the cavity are rejected with the same transfer function;
- Proportional only;
- Proportional and integral, much higher rejection at low frequencies;
- Easier to see with the logarithmic frequency scale

LLRF Characterization

Stability Measurements

Precision Measurements

- Measured from setpoint to the error signal;
- Shows attenuation at frequencies where feedback has gain;
- Perturbations at the input of the cavity are rejected with the same transfer function;
- Proportional only;
- Proportional and integral, much higher rejection at low frequencies;
- Easier to see with the logarithmic frequency sca

LLRF Characterization

Stability Measurements

Precision Measurements

Closed Loop Transfer Functions

- Measured from setpoint to the error signal;
- Shows attenuation at frequencies where feedback has gain;
- Perturbations at the input of the cavity are rejected with the same transfer function;
- Proportional only;
- Proportional and integral, much higher rejection at low frequencies;
- Easier to see with the logarithmic frequency scale.

LLRF Characterization

Stability Measurements

Precision Measurements

Outline

Overview

- LLRF9 Introduction
- Inputs and Interlocks
- Feedback Loops
- Diagnostics
- 2 LLRF Characterization
 - Frequency Domain
 - Time Domain
- Stability Measurements
 Thermal
- Precision Measurements
 - Tuning Scans
 - Beam-Based Calibration

LLRF Characterization

Stability Measurements

Precision Measurements

Step Response

• Ramp start triggers waveform acquisition;

- Ramp profile loaded with a 10% amplitude step (230 to 253 kV);
- Open loop: phase shift (AM-PM in power stage), setpoint error;
- Closed loop response is much faster, as expected;
- A bit too much gain, overshoot seen;
- Prominent ripple due to SSA power supply switching at 190 kHz.

LLRF Characterization

Stability Measurements

Precision Measurements

Step Response

- Ramp start triggers waveform acquisition;
- Ramp profile loaded with a 10% amplitude step (230 to 253 kV);
- Open loop: phase shift (AM-PM in power stage), setpoint error;
- Closed loop response is much faster, as expected;
- A bit too much gain, overshoot seen;
- Prominent ripple due to SSA power supply switching at 190 kHz.

LLRF Characterization

Stability Measurements

Precision Measurements

Step Response

- Ramp start triggers waveform acquisition;
- Ramp profile loaded with a 10% amplitude step (230 to 253 kV);
- Open loop: phase shift (AM-PM in power stage), setpoint error;
- Closed loop response is much faster, as expected;
- A bit too much gain, overshoot seen;
- Prominent ripple due to SSA power supply switching at 190 kHz.

LLRF Characterization

Stability Measurements

Precision Measurements

Step Response

- Ramp start triggers waveform acquisition;
- Ramp profile loaded with a 10% amplitude step (230 to 253 kV);
- Open loop: phase shift (AM-PM in power stage), setpoint error;
- Closed loop response is much faster, as expected;
- A bit too much gain, overshoot seen;
- Prominent ripple due to SSA power supply switching at 190 kHz.

LLRF Characterization

Stability Measurements

Precision Measurements

Step Response

- Ramp start triggers waveform acquisition;
- Ramp profile loaded with a 10% amplitude step (230 to 253 kV);
- Open loop: phase shift (AM-PM in power stage), setpoint error;
- Closed loop response is much faster, as expected;
- A bit too much gain, overshoot seen;
- Prominent ripple due to SSA power supply switching at 190 kHz.

LLRF Characterization

Stability Measurements

Precision Measurements

Step Response

- Ramp start triggers waveform acquisition;
- Ramp profile loaded with a 10% amplitude step (230 to 253 kV);
- Open loop: phase shift (AM-PM in power stage), setpoint error;
- Closed loop response is much faster, as expected;
- A bit too much gain, overshoot seen;
- Prominent ripple due to SSA power supply switching at 190 kHz.

LLRF Characterization

Stability Measurements

Precision Measurements

Pulse Response

• Open-loop pulse response, cavity A;

- Base 2 kV, pulse 20 kV;
- Larger reflected power peak at the falling edge, expected for coupling factor β > 1;
- Phase slope during pulse decay indicates the cavity is slightly detuned.

LLRF Characterization

Stability Measurements

Precision Measurements

Pulse Response

- Open-loop pulse response, cavity A;
- Base 2 kV, pulse 20 kV;
- Larger reflected power peak at the falling edge, expected for coupling factor β > 1;
- Phase slope during pulse decay indicates the cavity is slightly detuned.

LLRF Characterization

Stability Measurements

Precision Measurements

Pulse Response

- Open-loop pulse response, cavity A;
- Base 2 kV, pulse 20 kV;
- Larger reflected power peak at the falling edge, expected for coupling factor β > 1;
- Phase slope during pulse decay indicates the cavity is slightly detuned.

LLRF Characterization

Stability Measurements

Precision Measurements

Pulse Response

- Open-loop pulse response, cavity A;
- Base 2 kV, pulse 20 kV;
- Larger reflected power peak at the falling edge, expected for coupling factor β > 1;
- Phase slope during pulse decay indicates the cavity is slightly detuned.

Overview

LLRF Characterization

Stability Measurements •00 Precision Measurements

Outline

Overview

- LLRF9 Introduction
- Inputs and Interlocks
- Feedback Loops
- Diagnostics
- 2 LLRF Characterization
 - Frequency Domain
 - Time Domain
- Stability Measurements
 Thermal
- Precision Measurements
 - Tuning Scans
 - Beam-Based Calibration

LLRF Characterization

Stability Measurements

Precision Measurements

Thermal Stability: Lab Measurements

- 9 internal sensors on cold plate: 6 NTCs, 3 DS18B20 digital sensors;
- Three temperature stabilization loops using thermoelectric coolers;
- Two external sensors, in air and attached to chassis;
- Tight stabilization of in-loop sensors;
- Residual sensitivity of out-of-loop sensors is 0.09–0.12 °C/°C.

LLRF Characterization

Stability Measurements

Precision Measurements

Thermal Stability: Lab Measurements

- 9 internal sensors on cold plate: 6 NTCs, 3 DS18B20 digital sensors;
- Three temperature stabilization loops using thermoelectric coolers;
- Two external sensors, in air and attached to chassis;
- Tight stabilization of in-loop sensors;
- Residual sensitivity of out-of-loop sensors is 0.09–0.12 °C/°C.

LLRF Characterization

Stability Measurements

Precision Measurements

Thermal Stability: Lab Measurements

- 9 internal sensors on cold plate: 6 NTCs, 3 DS18B20 digital sensors;
- Three temperature stabilization loops using thermoelectric coolers;
- Two external sensors, in air and attached to chassis;
- Tight stabilization of in-loop sensors;

(日)

 Residual sensitivity of out-of-loop sensors is 0.09–0.12 °C/°C.

LLRF Characterization

Stability Measurements

Precision Measurements

Thermal Stability: Lab Measurements

- 9 internal sensors on cold plate: 6 NTCs, 3 DS18B20 digital sensors;
- Three temperature stabilization loops using thermoelectric coolers;
- Two external sensors, in air and attached to chassis;
- Tight stabilization of in-loop sensors;

(日)

 Residual sensitivity of out-of-loop sensors is 0.09–0.12 °C/°C.

LLRF Characterization

Stability Measurements

Precision Measurements

Thermal Stability: Lab Measurements

- 9 internal sensors on cold plate: 6 NTCs, 3 DS18B20 digital sensors;
- Three temperature stabilization loops using thermoelectric coolers;
- Two external sensors, in air and attached to chassis;
- Tight stabilization of in-loop sensors;

(日)

 Residual sensitivity of out-of-loop sensors is 0.09–0.12 °C/°C.

LLRF Characterization

Stability Measurements

Precision Measurements

Thermal Stability: LNLS Measurements

Recorded over 2 days;

- Diurnal temperature variation clearly seen in out of loop sensors and Peltier control signals;
- Out of loop NTC sensors show 0.22 °*C* peak-to-peak variation.

LLRF Characterization

Stability Measurements

Precision Measurements

Thermal Stability: LNLS Measurements

- Recorded over 2 days;
- Diurnal temperature variation clearly seen in out of loop sensors and Peltier control signals;
- Out of loop NTC sensors show 0.22 °C peak-to-peak variation.

LLRF Characterization

Stability Measurements

Precision Measurements

Thermal Stability: LNLS Measurements

- Recorded over 2 days;
- Diurnal temperature variation clearly seen in out of loop sensors and Peltier control signals;
- Out of loop NTC sensors show 0.22 °C peak-to-peak variation.

Overview

LLRF Characterization

Stability Measurements

Precision Measurements

Outline

1) Overview

- LLRF9 Introduction
- Inputs and Interlocks
- Feedback Loops
- Diagnostics
- 2 LLRF Characterization
 - Frequency Domain
 - Time Domain
- Stability MeasurementsThermal
- Precision Measurements
 Tuning Scans
 - Beam-Based Calibration

LLRF Characterization

Stability Measurements

Precision Measurements

Tuning Scan at SESAME

- Run the station in open loop, fixed setpoint;
- Move the cavity from limit switch to limit switch;
- At multiple points record:
 - Probe voltage and phase;
 - Forward and reflected power and phase;
 - LLRF9 output power meter;
 - Tuner potentiometer;
 - Open-loop transfer function.

A D > A P > A D > A D >

A lot of interesting plots!

LLRF Characterization

Stability Measurements

Precision Measurements

Tuner Position Potentiometer vs. Detuning

- Nearly linear;
- A deviation near zero detuning is caused by wall heating;
- Slope should be consistent, offset shifts with temperature.

LLRF Characterization

Stability Measurements

Precision Measurements

Cavity Voltage vs. Detuning

• Cavity voltage peaks around 0;

- Zooming in we see an interesting effect — peak voltage is around 650 Hz;
- Likely due to imperfect match at the SSA output.

LLRF Characterization

Stability Measurements

Precision Measurements

Cavity Voltage vs. Detuning

- Cavity voltage peaks around 0;
- Zooming in we see an interesting effect — peak voltage is around 650 Hz;
- Likely due to imperfect match at the SSA output.

LLRF Characterization

Stability Measurements

Precision Measurements

Cavity Voltage vs. Detuning

- Cavity voltage peaks around 0;
- Zooming in we see an interesting effect — peak voltage is around 650 Hz;
- Likely due to imperfect match at the SSA output.

LLRF Characterization

Stability Measurements

Precision Measurements

Waveguide Power vs. Detuning

• Reflected power minimum near 0;

- Forward power reading changes due to finite directivity of couplers;
- Drive level is constant;
- Peak field and minimum reflected are offset;
- Offset minimum of reflected power is expected, directivity again.

LLRF Characterization

Stability Measurements

Precision Measurements

Waveguide Power vs. Detuning

- Reflected power minimum near 0;
- Forward power reading changes due to finite directivity of couplers;
- Drive level is constant;
- Peak field and minimum reflected are offset;
- Offset minimum of reflected power is expected, directivity again.

LLRF Characterization

Stability Measurements

Precision Measurements

Waveguide Power vs. Detuning

- Reflected power minimum near 0;
- Forward power reading changes due to finite directivity of couplers;
- Drive level is constant;
- Peak field and minimum reflected are offset;
- Offset minimum of reflected power is expected, directivity again.

LLRF Characterization

Stability Measurements

Precision Measurements

Waveguide Power vs. Detuning

- Reflected power minimum near 0;
- Forward power reading changes due to finite directivity of couplers;
- Drive level is constant;
- Peak field and minimum reflected are offset;
- Offset minimum of reflected power is expected, directivity again.

LLRF Characterization

Stability Measurements

Precision Measurements

Waveguide Power vs. Detuning

- Reflected power minimum near 0;
- Forward power reading changes due to finite directivity of couplers;
- Drive level is constant;
- Peak field and minimum reflected are offset;
- Offset minimum of reflected power is expected, directivity again.

Overview

LLRF Characterization

Stability Measurements

Precision Measurements

Coupler Directivity Correction

- Assuming power source is matched, we compute the coupler directivity correction matrix;
- At each point, we compute the expected reflection coefficient at RF from cavity transfer function fit;
- Matrix elements are then adjusted to:
 - Remove variation in forward power;
 - Match measured and computed reflection.

Overview

LLRF Characterization

Stability Measurements

Precision Measurements

Coupler Directivity Correction

- Assuming power source is matched, we compute the coupler directivity correction matrix;
- At each point, we compute the expected reflection coefficient at RF from cavity transfer function fit;
- Matrix elements are then adjusted to:
 - Remove variation in forward power;
 - Match measured and computed reflection.

LLRF Characterization

Stability Measurements

Precision Measurements

Coupler Directivity Correction

- Assuming power source is matched, we compute the coupler directivity correction matrix;
- At each point, we compute the expected reflection coefficient at RF from cavity transfer function fit;
- Matrix elements are then adjusted to:
 - Remove variation in forward power;
 - Match measured and computed reflection.

< □ > < □ > < □ > < □ > < □ > < □ >

LLRF Characterization

Stability Measurements

Precision Measurements

Coupler Directivity Correction

- Assuming power source is matched, we compute the coupler directivity correction matrix;
- At each point, we compute the expected reflection coefficient at RF from cavity transfer function fit;
- Matrix elements are then adjusted to:
 - Remove variation in forward power;
 - Match measured and computed reflection.

A D > A B > A B > A B

LLRF Characterization

Stability Measurements

Precision Measurements

Time Domain Cavity Response

• Step drive to 0;

- Natural cavity response;
- Can extract quality factor and detuning;
- At the same tuning point collected 20 transfer function measurements;
- Roughly 300 Hz offset between frequency and time domain.

LLRF Characterization

Stability Measurements

Precision Measurements

Time Domain Cavity Response

- Step drive to 0;
- Natural cavity response;
- Can extract quality factor and detuning;
- At the same tuning point collected 20 transfer function measurements;
- Roughly 300 Hz offset between frequency and time domain.

LLRF Characterization

Stability Measurements

Precision Measurements

Time Domain Cavity Response

- Step drive to 0;
- Natural cavity response;
- Can extract quality factor and detuning;
- At the same tuning point collected 20 transfer function measurements;
- Roughly 300 Hz offset between frequency and time domain.

LLRF Characterization

Stability Measurements

Precision Measurements

Time Domain Cavity Response

- Step drive to 0;
- Natural cavity response;
- Can extract quality factor and detuning;
- At the same tuning point collected 20 transfer function measurements;
- Roughly 300 Hz offset between frequency and time domain.

LLRF Characterization

Stability Measurements

Precision Measurements

Time Domain Cavity Response

- Step drive to 0;
- Natural cavity response;
- Can extract quality factor and detuning;
- At the same tuning point collected 20 transfer function measurements;
- Roughly 300 Hz offset between frequency and time domain.

イロト イ理ト イヨト イヨト

Overview

LLRF Characterization

Stability Measurements

Precision Measurements

Outline

1) Overview

- LLRF9 Introduction
- Inputs and Interlocks
- Feedback Loops
- Diagnostics
- 2 LLRF Characterization
 - Frequency Domain
 - Time Domain
- Stability MeasurementsThermal
- Precision Measurements
 Tuning Scans
 - Beam-Based Calibration

LLRF Characterization

Stability Measurements

Precision Measurements

Cavity Parameters at LNLS

Overview

LLRF Characterization

Stability Measurements

Precision Measurements

Cavity Parameters at LNLS

LLRF Characterization

Stability Measurements

Precision Measurements

Probe Calibration

- Scanned cavity 1 field down to 170 kV, captured synchrotron tune using LFB tune tracking;
- Fit ω_s to total voltage V_g assuming:
 - Stations are in phase (phased earlier to maximize ω_s);
 - Momentum compaction, beam energy, energy loss per turn are as published.

(日)

• Obtain scaling factors for existing calibrations.

LLRF Characterization

Stability Measurements

Precision Measurements

Probe Calibration

- Scanned cavity 1 field down to 170 kV, captured synchrotron tune using LFB tune tracking;
- Fit ω_s to total voltage V_g assuming:
 - Stations are in phase (phased earlier to maximize ω_s);
 - Momentum compaction, beam energy, energy loss per turn are as published.

(日)

• Obtain scaling factors for existing calibrations.

LLRF Characterization

Stability Measurements

Precision Measurements

Probe Calibration

- Scanned cavity 1 field down to 170 kV, captured synchrotron tune using LFB tune tracking;
- Fit ω_s to total voltage V_g assuming:
 - Stations are in phase (phased earlier to maximize ω_s);
 - Momentum compaction, beam energy, energy loss per turn are as published.

(日)

• Obtain scaling factors for existing calibrations.

LLRF Characterization

Stability Measurements

Precision Measurements

Summary

LLRF9 integrates a lot of functionality in a single unit;

- Used with normal conducting cavities at a number of machines;
- Powerful diagnostic features to simplify tuning and operation;
- Enables precision measurements of accelerator parameters.

Stability Measurements

Summary

- LLRF9 integrates a lot of functionality in a single unit;
- Used with normal conducting cavities at a number of machines;
- Powerful diagnostic features to simplify tuning and operation;
- Enables precision measurements of accelerator parameters.

Summary

- LLRF9 integrates a lot of functionality in a single unit;
- Used with normal conducting cavities at a number of machines;
- Powerful diagnostic features to simplify tuning and operation;
- Enables precision measurements of accelerator parameters.

Summary

- LLRF9 integrates a lot of functionality in a single unit;
- Used with normal conducting cavities at a number of machines;
- Powerful diagnostic features to simplify tuning and operation;
- Enables precision measurements of accelerator parameters.

