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Bunch-by-bunch Feedback
Definition
In bunch-by-bunch feedback approach the actuator signal for a given
bunch depends only on the past motion of that bunch.

Controller

Beam
Kicker structure

Back−endFront−end

SensorBPM Actuator

I Bunches are processed sequentially;
I Correction kicks are applied one turn later;
I Diagonal feedback — computationally efficient;
I De-facto standard in synchrotrons.
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Topology Options
I Bunch-by-bunch feedback approach is extremely powerful;
I Applies the same feedback to all coupled-bunch eigenmodes

independent of the fill pattern;
I In the last 20–30 years electron and positron machines have

settled on a single pickup single kicker topology:
I Kick for each bunch is generated by a linear combination of

transverse position measurements from previous turns (FIR filter);
I Feedback filter coefficients can be tuned to any fractional tune and

pickup-to-kicker phase advance;
I Compact and robust.

I FCC-ee, especially at Z, presents unique challenges for the
feedback due to fast growth times;

I A spatial sampling approach takes advantage of high integer tune
to generate appropriately phase correction signal in a single turn;

I More exotic schemes (sub-revolution delay) are possible, but not
warranted at growth times of 3–4 turns.
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Spatial Sampling

processor

Feedback

I Start with a conventional single
pickup single kicker system;

I Add another pickup at 60–120°
phase advance point;

I One more;
I Four is not a limit;
I Correction kick is calculated in

one turn instead of using 4 turns
worth of bunch motion;

I Group delay is reduced from 3
turns to 1.
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Spatial Sampling — General Comments

processor

Feedback

I Feedback processor must:
I Remove bunch-by-bunch DC offset

(closed orbit) from each pickup
signal;

I Calculate correction kick from a
linear combination of the resulting
signals;

I At least two non-degenerate pickups
are needed, 3–4 probably provide a
good balance between complexity,
robustness, and performance.

I Phase advance from pickup to pickup
does not need to be identical;

I Avoid cases where pickups are at nπ;
I Avoid large swings in beta function

from pickup to pickup.
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Technical Aspects

processor

Feedback

I Multiple analog receivers — need to
worry about gain drifts;
I Measure difference and sum signals

simultaneously to calibrate out these
drifts;

I Robustness — systems with 3+
pickups can adapt to pickup failure
with a simple coefficient
reconfiguration;

I Sensing noise scales as the
√

N;
I Hardware complexity scale as N.
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Residual Motion and Disturbance Sources
I Residual dipole oscillation in collision can be converted to

emittance blowup and can lead to luminosity loss;
I Without perturbation sources, residual motion under feedback

control is determined by detection noise and closed-loop dynamics;
I Ions in the electron ring and electron cloud in the positron ring can

excite transverse instabilities;
I Unlike HOMs and resistive wall, these will also drive steady-state

dipole oscillation even under feedback stabilization;
I Suppression of these perturbations may require operation at higher

loop gains than optimal from the noise-only prospective;
I With the lowest betatron lines at 520–660 Hz, mechanical

disturbances can drive transverse motion;
I Special care is needed when deploying local or global orbit

feedback mechanisms in FCC-ee due to the Bode sensitivity
integral.
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Sensitivity and Noise

∑ Error

Transverse position (y)

Disturbances

Feedback Beam

Detection noise (vn)

I Complementary sensitivity function T (ω) = L(ω)/(1 + L(ω)) is the
transfer function between noise vn and beam motion y ;

I Assuming flat spectral density for vn can calculate amplification or
attenuation of sensing noise;

I Qualitatively, faster damping corresponds to wider bandwidth→
higher noise sensitivity;

I Rule of thumb: closed loop damping rate should be of the same
magnitude as open-loop growth rate.
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Sensitivity Functions Compared
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Complementary sensitivity function, noise gain −18.7 dB

I Growth and damping times in
turns;

I τol = τcl = 300: −18.7 dB
I τol = τcl = 30: −8.1 dB
I τol = 30, τcl = 3.2: −6.0 dB
I τol = 5.4, τcl = 5.4: 3.8 dB
I τol = 3.3, τcl = 3.3: 6.1 dB
I Fast growth rates result in

higher noise sensitivity;
I Work done at CERN for the

upgraded LHC and HL-LHC
damping systems pushes state
of the art in low-noise
bunch-by-bunch sensing.
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I τol = τcl = 300: −18.7 dB
I τol = τcl = 30: −8.1 dB
I τol = 30, τcl = 3.2: −6.0 dB
I τol = 5.4, τcl = 5.4: 3.8 dB
I τol = 3.3, τcl = 3.3: 6.1 dB
I Fast growth rates result in

higher noise sensitivity;
I Work done at CERN for the

upgraded LHC and HL-LHC
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higher noise sensitivity;
I Work done at CERN for the

upgraded LHC and HL-LHC
damping systems pushes state
of the art in low-noise
bunch-by-bunch sensing.
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Monitor channel, loop gain 1

I Two independent channels
monitoring vertical motion, one in
the feedback loop, one out of the
loop;

I Roughly similar sensitivities,
250 mA in 1000 bunches;

I At low feedback gain a visible
residual motion line due to ion
excitation;

I Double the feedback gain;
I Again;
I Again;
I Once more;
I A wider bandwidth comparison.

1Measurements courtesy of Weixing Cheng of NSLS-II.
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I A wider bandwidth comparison.
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I Two independent channels
monitoring vertical motion, one in
the feedback loop, one out of the
loop;

I Roughly similar sensitivities,
250 mA in 1000 bunches;

I At low feedback gain a visible
residual motion line due to ion
excitation;

I Double the feedback gain;
I Again;
I Again;
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I A wider bandwidth comparison.

1Measurements courtesy of Weixing Cheng of NSLS-II.



Transverse Feedback
Options For FCC-ee

Overall Topology

Spatial Sampling

Noise, Disturbance
Sources, Residual Motion

Multiple Feedback
Approach

What’s Next

Summary

Averaged Bunch Spectra vs. Feedback Gain 1

80 85 90 95 100 105 110 115
10

−1

10
0

Frequency (kHz)

M
a

g
n

it
u

d
e

 (
c
o

u
n

ts
)

Vertical feedback channel, loop gain 2

80 85 90 95 100 105 110 115

10
−0.5

10
−0.3

10
−0.1

10
0.1

Frequency (kHz)

M
a

g
n

it
u

d
e

 (
c
o

u
n

ts
)

Monitor channel, loop gain 2

I Two independent channels
monitoring vertical motion, one in
the feedback loop, one out of the
loop;

I Roughly similar sensitivities,
250 mA in 1000 bunches;

I At low feedback gain a visible
residual motion line due to ion
excitation;

I Double the feedback gain;
I Again;
I Again;
I Once more;
I A wider bandwidth comparison.

1Measurements courtesy of Weixing Cheng of NSLS-II.
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Vertical feedback channel, loop gain 4
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Monitor channel, loop gain 4

I Two independent channels
monitoring vertical motion, one in
the feedback loop, one out of the
loop;

I Roughly similar sensitivities,
250 mA in 1000 bunches;

I At low feedback gain a visible
residual motion line due to ion
excitation;

I Double the feedback gain;
I Again;
I Again;
I Once more;
I A wider bandwidth comparison.

1Measurements courtesy of Weixing Cheng of NSLS-II.
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Vertical feedback channel, loop gain 8
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Monitor channel, loop gain 8

I Two independent channels
monitoring vertical motion, one in
the feedback loop, one out of the
loop;

I Roughly similar sensitivities,
250 mA in 1000 bunches;

I At low feedback gain a visible
residual motion line due to ion
excitation;

I Double the feedback gain;
I Again;
I Again;
I Once more;
I A wider bandwidth comparison.

1Measurements courtesy of Weixing Cheng of NSLS-II.
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Vertical feedback channel, loop gain 16
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Monitor channel, loop gain 16

I Two independent channels
monitoring vertical motion, one in
the feedback loop, one out of the
loop;

I Roughly similar sensitivities,
250 mA in 1000 bunches;

I At low feedback gain a visible
residual motion line due to ion
excitation;

I Double the feedback gain;
I Again;
I Again;
I Once more;
I A wider bandwidth comparison.

1Measurements courtesy of Weixing Cheng of NSLS-II.
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I Two independent channels
monitoring vertical motion, one in
the feedback loop, one out of the
loop;

I Roughly similar sensitivities,
250 mA in 1000 bunches;

I At low feedback gain a visible
residual motion line due to ion
excitation;

I Double the feedback gain;
I Again;
I Again;
I Once more;
I A wider bandwidth comparison.

1Measurements courtesy of Weixing Cheng of NSLS-II.
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Testing the Ideas, Brainstorming
I A workshop to bring together coupled-bunch instability control,

beam dynamics, and impedance experts to brainstorm and analyze
ideas;

I Similar to a recent “I.FAST Workshop 2024 on Bunch-by-Bunch
Feedback Systems and Related Beam Dynamics”:
I Many experts in one room — interesting new ideas;
I Experimental campaign at a real accelerator!

I Focus on FCC-ee specific challenges and proposals;
I Experiments: what can we test in the existing machines?
I Push conventional topology to maximum damping (models suggest

3–4 turns);
I Artificially increase the growth rates:

I Steer the beam closer to the wall to increase the resistive wall
growth rate;

I Adjust normal conducting RF cavity temperature to increase the
HOM rates;

I With Dimtel iGp12 hardware one could attempt a test of the 3
pickup spatial sampling approach.
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Summary

I Control of fast resistive wall instabilities in the FCC-ee is feasible;
I Achieving sufficiently low residual motion may be challenging due

to wide closed-loop bandwidth and various perturbation sources;
I Tests at existing machines are a good way to validate and improve

our understanding of the problem and of the limits.
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