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Low-Level RF Definition

@ A typical conventional accelerator uses high-power RF
system to accelerate the particles.
@ The high-power (or high-level) RF system includes:

e Power sources: klystron, 10T, TWT, solid-state amplifier,
etc.;

e Accelerating cavities;

e Power distribution: waveguides, splitters, circulators.

@ Some system is necessary to generate the drive signal for
the high-level RF - that is Low-Level RF system.

@ In the simplest case it could be just an oscillator with
amplitude and phase controls.

@ In modern LLRF, closed-loop control is typically employed.
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1 actuator

Plant

controller

sensor

Start with a physical
system (a plant).

Measure some property of
a plant with a sensor.

Plant behavior (state) can
be affected by an actuator.

Feedback loop is
completed by a controller.
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Closed-loop Feedback: Structure and Example

@ For an accelerator RF
system we have:

e Our plantis an RF
cavity.

e Actuator - klystron.

@ Sensor - cavity probe.

e Controller - LLRF

Probe |- module.

@ Loop signals
o Output y - cavity field;
e Input u - klystron power;
o Reference r - amplitude

and phase.

Y

Klystron » Cavity

LLRF
r controller |
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Typical LLRF Feedback Controller

From sensors | Reference
I
L
ADCs

To acwamrsI
DACs

@ Digital signal processing

@ Cavity probe signals
downconverted to
intermediate frequency (IF);

@ Outputs at IF as well;

@ FPGA-based real-time
processing.
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EMMA LLRF Tasks

@ Tasks, common to all accelerators:
o Cauvity field control;
e Cavity tuning:
@ Resonant frequency measurement;
@ Tuner control;
@ Synchronization;
e Built-in diagnostics;
o Automated system configuration.
@ EMMA-specific tasks:
e Ring frequency tuning
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Overall Topology

@ Cavity signals are lined up
and added together
e Single cavity with N,
times the shunt
Station setpoint Feedforward impedance_

i— l : @ Reference channel - phase
é—» cg/neﬁi)tiﬁ;r i’@_> cFoeﬁat:)al\ceT ?CZD trackl ng .
Phase reference Output to the IOT o Feed'fo rWard |nput

e Used for reducing
feedback turn-on
transients;

e Framework for adaptive
feed-forward.
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Reference Generator

@ Numerically-controller
o @ oscillator at IF.
@ NCO phase must be
14f phase-referenced to some
@9 @)H source:
Q % T e Start NCO at the same

@ phase every pulse;
90° e Use the same NCO to

downconvert master
oscillator reference.
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System Elements - Continued
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Vector Combiner

@ Uses multiple gain/phase
blocks.

@ Per cavity amplitude and
phase adjustments.

@ Common-mode phase
adjustment:

e Track reference phase;
o Adjust feedback loop
phase shift.

Vs (N

|
V-
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Gain/phase Block

@ Two-tap FIR filter.

@ 6 is the IF phase advance
per sampling period.

Coefficients

1 cos6 & | _qg Cos ¢
0 sind a | sin¢
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Feedback Controller

z[n]

Kp

@ Proportional/integrator (PI)
response.

@ Processing at IF - AC
integrator.

@ Critically stable pole at IF.

@ Coefficient p depends on
IF as 2cos 6.
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Cavity Frequency Detection

@ In a pulsed machine it is possible to measure cavity
frequency and Q on a pulse-by-pulse basis.

@ After power source drive is turned off, cavity field shows
natural decay.

@ Efficient algorithms exist for extracting frequency and
damping time from the transient.

e Parameters can be estimated every pulse.
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What is Included and What is Left Out

@ Included:

Tuneable LLRF controller;

ADC quantization and noise;

IOT frequency response;

IOT saturation;

IOT gain modulation by power supply;
Cavity frequency estimation.

@ Not implemented:

Beam loading;

IOT phase shift modulation by power supply;
Signal path filters;

Automatic vector sum setup.
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No Frequency Offset, No Errors

@ Simulate for 100 us to save

RF pulse: feedback on time 28.2 ps ti m e -

@ Station setpoint 840 kV,
—10 degrees.
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No Frequency Offset, No Errors

@ Simulate for 100 us to save
Zoom of the turn-on transient t| me.

: @ Station setpoint 840 kV,
i /— —10 degrees.

@ Feedback turn-on is well
controlled, settling by
] 40 ys.
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error (%)

Voltage

error (degrees)

Phase

%107 Loop tracking error
4 T T
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@ Simulate for 100 us to save
time.

@ Station setpoint 840 kV,
—10 degrees.

@ Feedback turn-on is well
controlled, settling by
40 ps.

@ Residual errors 0.004 %
amplitude, 0.002° phase.
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RF pulse: feedback on time 28.2 s
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Zoom of the turn-on transient

< .5 '
oo 7 @ Feedback turn-on is
2 ] slightly slower, settles by

50 us.
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Loop tracking error

£ ooos @ Feedback turn-on is
m slightly slower, settles by
) 70'0155 60 65 70 75 80 85 90 95 100 50 MS'
e e @ Residual errors 0.005 %
K amplitude, 0.002° phase.
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Frequency Offset -4 MHz, No Errors

RF pulse: feedback on time 28.2 s

1000 T

800- 1
600 1

400 1

Station voltage (V)

200 1

° 80 100 120

60
Time (us)

Station phase (degrees)

60 80 100 120
Time (ps)



Simulation Results
[e]e]e] lele)

Frequency Offset -4 MHz, No Errors

@ Some overshoot in
feedback settling, damped
by 60 us

Zoom of the turn—on transient
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Frequency Offset -4 MHz, No Errors

@ Some overshoot in
feedback settling, damped
by 60 us

@ Residual errors 0.03 %

y amplitude, 0.03° phase.

Loop tracking error

Voltage error (%)
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Frequency Offset -4 MHz, No Errors

@ Some overshoot in
feedback settling, damped

by 60 us
-~ @ Residual errors 0.03 %
] 0 amplitude, 0.03° phase.

@ Low-level oscillation is
Il AL likely a simulation artifact,
T needs further investigation.

: “ @ At this offset we are
| outside 10T bandwidth, so
e e o onow o om0 s o loop gain and drive signal

must be raised by 6 dB.
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Frequency Offset -4 MHz, 10 kHz Cavity Tuning Errors

@ Cavity tuning errors cause

open-loop amplitude and
" RF pulse: feedback on time 28.2is phase errors.

8001
600
400
200

0 20 40

Station voltage (kV)

60 80 100 120
Time (us)

NN B e
@ S & o

Station phase (degrees)
o

8
o

20 40 60 80 100 120
Time (us)



Simulation Results
[e]e]e]e] o)

Frequency Offset -4 MHz, 10 kHz Cavity Tuning Errors

@ Cavity tuning errors cause
open-loop amplitude and
Zoom of the turn—on transient phase errorS.

@ Some overshoot in
feedback response,
damped by 60 us
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@ Cavity tuning errors cause
open-loop amplitude and

Loop racking e phase errors.

i ] @ Some overshoot in
m° | feedback response,
" damped by 60 s
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Time (us)

@ Residual errors 0.03 %
amplitude, 0.03° phase.
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Frequency Offset -4 MHz, 10 kHz Cavity Tuning Errors

@ Cavity tuning errors cause
open-loop amplitude and

o Loop tracking error phase errors.
g oo ] @ Some overshoot in
;0 7 feedback response,
T damped by 60 us

55 60 65 70 75 80 8 90 95 100
Time (us)

@ Residual errors 0.03 %
amplitude, 0.03° phase.
@ Average tuning error of

D R 5 kHz, much larger than
55 60 65 70 75 8 8 9 95 100 o
e (9 realistically expected.
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Frequency Offset -4 MHz, 10 kHz Cavity Tuning

Errors, HVPS Ripple

Loop tracking error

i ® 1% HVPS ripple at 2 kHz.
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Frequency Offset -4 MHz, 10 kHz Cavity Tuning

Errors, HVPS Ripple

Loop tracking error

g
5 ° @ 1% HVPS ripple at 2 kHz.
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’ map out the response.
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Frequency Offset -4 MHz, 10 kHz Cavity Tuning

Errors, HVPS Ripple

Loop tracking error

i ® 1% HVPS ripple at 2 kHz.
) @ Longer pulse simulated to

-0.2
50 100 150 200 250 300 350 400 450 500

Time (us)
o map out the response.
g o @ Residual errors 0.1 %
m . amplitude, 0.05° phase.

-01
50 100 150 200 250 300 350 400 450 500
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Summary

Summary

@ A LLRF architecture has been developed for EMMA.
@ Modeling results show the feasibility of this architecture.

@ With the proposed approach the RF system can be
expected to easily meet current performance targets
(0.3%, 0.3°).

@ Trigger jitter effects must be carefully considered for
frequency offset operation.
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