
Introduction System Architecture Simulation Results Summary

Low-level RF architecture for EMMA

Dmitry Teytelman

Dimtel, Inc., San Jose, CA, USA

April 14, 2008



Introduction System Architecture Simulation Results Summary

Outline

1 Introduction
Low-Level RF Definition
Closed-loop Feedback
EMMA LLRF Tasks

2 System Architecture
Overall Topology
Building Blocks
Feedback Controller
Cavity Frequency Detection

3 Simulation Results
What is Included and What is Left Out
Simulation Output



Introduction System Architecture Simulation Results Summary

Outline

1 Introduction
Low-Level RF Definition
Closed-loop Feedback
EMMA LLRF Tasks

2 System Architecture
Overall Topology
Building Blocks
Feedback Controller
Cavity Frequency Detection

3 Simulation Results
What is Included and What is Left Out
Simulation Output



Introduction System Architecture Simulation Results Summary

Low-Level RF Definition

A typical conventional accelerator uses high-power RF
system to accelerate the particles.
The high-power (or high-level) RF system includes:

Power sources: klystron, IOT, TWT, solid-state amplifier,
etc.;
Accelerating cavities;
Power distribution: waveguides, splitters, circulators.

Some system is necessary to generate the drive signal for
the high-level RF - that is Low-Level RF system.
In the simplest case it could be just an oscillator with
amplitude and phase controls.
In modern LLRF, closed-loop control is typically employed.
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Closed-loop Feedback: Structure and Example
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Start with a physical
system (a plant).
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Start with a physical
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Measure some property of
a plant with a sensor.
Plant behavior (state) can
be affected by an actuator.
Feedback loop is
completed by a controller.
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Closed-loop Feedback: Structure and Example
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For an accelerator RF
system we have:

Our plant is an RF
cavity.
Actuator - klystron.
Sensor - cavity probe.
Controller - LLRF
module.

Loop signals
Output y - cavity field;
Input u - klystron power;
Reference r - amplitude
and phase.
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Typical LLRF Feedback Controller

ADCs DACs
Linear or nonlinear
control algorithm

From sensors Reference To actuators

Digital signal processing
Cavity probe signals
downconverted to
intermediate frequency (IF);
Outputs at IF as well;
FPGA-based real-time
processing.
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EMMA LLRF Tasks

Tasks, common to all accelerators:
Cavity field control;
Cavity tuning:

Resonant frequency measurement;
Tuner control;

Synchronization;
Built-in diagnostics;
Automated system configuration.

EMMA-specific tasks:
Ring frequency tuning
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source:

Start NCO at the same
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Use the same NCO to
downconvert master
oscillator reference.
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Vector Combiner
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Uses multiple gain/phase
blocks.
Per cavity amplitude and
phase adjustments.
Common-mode phase
adjustment:

Track reference phase;
Adjust feedback loop
phase shift.
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Gain/phase Block
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θ is the IF phase advance
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= G

[
cos φ
sin φ

]
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Feedback Controller
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integrator.
Critically stable pole at IF.
Coefficient p depends on
IF as 2 cos θ.



Introduction System Architecture Simulation Results Summary

Feedback Controller

Z−1

Z−1

y[n]KP

KI

−p

−1

x[n]

Proportional/integrator (PI)
response.
Processing at IF - AC
integrator.
Critically stable pole at IF.
Coefficient p depends on
IF as 2 cos θ.



Introduction System Architecture Simulation Results Summary

Feedback Controller

Z−1

Z−1

y[n]KP

KI

−p

−1

x[n]

Proportional/integrator (PI)
response.
Processing at IF - AC
integrator.
Critically stable pole at IF.
Coefficient p depends on
IF as 2 cos θ.



Introduction System Architecture Simulation Results Summary

Feedback Controller

Z−1

Z−1

y[n]KP

KI

−p

−1

x[n]

Proportional/integrator (PI)
response.
Processing at IF - AC
integrator.
Critically stable pole at IF.
Coefficient p depends on
IF as 2 cos θ.



Introduction System Architecture Simulation Results Summary

Outline

1 Introduction
Low-Level RF Definition
Closed-loop Feedback
EMMA LLRF Tasks

2 System Architecture
Overall Topology
Building Blocks
Feedback Controller
Cavity Frequency Detection

3 Simulation Results
What is Included and What is Left Out
Simulation Output



Introduction System Architecture Simulation Results Summary

Cavity Frequency Detection

In a pulsed machine it is possible to measure cavity
frequency and Q on a pulse-by-pulse basis.
After power source drive is turned off, cavity field shows
natural decay.
Efficient algorithms exist for extracting frequency and
damping time from the transient.

Parameters can be estimated every pulse.
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What is Included and What is Left Out

Included:
Tuneable LLRF controller;
ADC quantization and noise;
IOT frequency response;
IOT saturation;
IOT gain modulation by power supply;
Cavity frequency estimation.

Not implemented:
Beam loading;
IOT phase shift modulation by power supply;
Signal path filters;
Automatic vector sum setup.
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Frequency Offset -4 MHz, 10 kHz Cavity Tuning
Errors, HVPS Ripple
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1% HVPS ripple at 2 kHz.
Longer pulse simulated to
map out the response.
Residual errors 0.1 %
amplitude, 0.05◦ phase.
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A LLRF architecture has been developed for EMMA.
Modeling results show the feasibility of this architecture.
With the proposed approach the RF system can be
expected to easily meet current performance targets
(0.3%, 0.3◦).
Trigger jitter effects must be carefully considered for
frequency offset operation.
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