System overview

Features

User Interface

Measurement Examples

Integrated Gigasample Processor

Dmitry Teytelman

Dimtel, Inc., Redwood City, CA, USA

July 11, 2007

System overview	Features	User Interface	Measurement Examples	Summary
Outling				

- Introduction
- Operating experience
- 2 Features
 - Specification highlights
 - Architecture
 - Important features
 - Front and Back End
- 3 User Interface
 - Controls
 - Diagnostics

Measurement Examples

- Photon Factory
- DAΦNE

ヘロト ヘポト ヘヨト ヘヨト

System overview ●0000	Features 00000000	User Interface	Measurement Examples	Summary
Outline				

- Introduction
- Operating experience
- 2 Features
 - Specification highlights
 - Architecture
 - Important features
 - Front and Back End
- 3 User Interface
 - Controls
 - Diagnostics
- 4 Measurement Examples
 - Photon Factory
 - Ο ΟΑΦΝΕ

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

System overview	Features 00000000	User Interface	Measurement Examples	Summary
iGp Highlig	hts			

- A 500+ MHz processing channel.
- Finite Impulse Response (FIR) bunch-by-bunch filtering for feedback.
- Control and diagnostics via EPICS soft IOC on Linux.
- External triggers, fiducial synchronization, low-speed ADCs/DACs, general-purpose digital I/O.

• • • • • • • • • • • • •

System overview	Features 00000000	User Interface	Measurement Examples	Summary
What's Insid	е			

-2

イロト イロト イヨト イヨト

System overview ○○○●○	Features 00000000	User Interface	Measurement Examples	Summary
Outline				

・ロト ・ 理 ト ・ ヨ ト ・ ヨ

- Introduction
- Operating experience
- Features
 - Specification highlights
 - Architecture
 - Important features
 - Front and Back End
- 3 User Interface
 - Controls
 - Diagnostics
- 4 Measurement Examples
 - Photon Factory
 - DAΦΝΕ

System overview	Features	User Interface	Measurement Examples	Summary
00000				

• iGp is installed or has been tested in the following machines:

- DAΦNE: two systems, transverse feedback;
- Photon Factory (KEK): one system, longitudinal feedback.

- Gproto tests:
 - PEP-II transverse feedback;
 - KEKB transverse feedback;
 - ATF damping ring longitudinal feedback;
 - DAΦNE transverse feedback;
 - PEP-II bunch-by-bunch luminosity monitor.

System overview ○○○○●	Features 00000000	User Interface	Measurement Examples	Summary

- iGp is installed or has been tested in the following machines:
 - DAΦNE: two systems, transverse feedback;
 - Photon Factory (KEK): one system, longitudinal feedback.

- Gproto tests:
 - PEP-II transverse feedback;
 - KEKB transverse feedback;
 - ATF damping ring longitudinal feedback;
 - DAΦNE transverse feedback;
 - PEP-II bunch-by-bunch luminosity monitor.

ا ام و المعام و ا	la tra cara di T			
0000				
System overview	Features	User Interface	Measurement Examples	Summary

- iGp is installed or has been tested in the following machines:
 - DAΦNE: two systems, transverse feedback;
 - Photon Factory (KEK): one system, longitudinal feedback.

- Gproto tests:
 - PEP-II transverse feedback;
 - KEKB transverse feedback;
 - ATF damping ring longitudinal feedback;
 - DAΦNE transverse feedback;
 - PEP-II bunch-by-bunch luminosity monitor.

In a tall a d L la	in and Ta	- 1 -		
System overview	Features 00000000	User Interface	Measurement Examples	Summary

- iGp is installed or has been tested in the following machines:
 - DAΦNE: two systems, transverse feedback;
 - Photon Factory (KEK): one system, longitudinal feedback.

・ロト ・ 同ト ・ ヨト ・ ヨ

• Gproto tests:

- PEP-II transverse feedback;
- KEKB transverse feedback;
- ATF damping ring longitudinal feedback;
- DAΦNE transverse feedback;
- PEP-II bunch-by-bunch luminosity monitor.

ا ام و المعام و ا	la tra cara di T			
0000				
System overview	Features	User Interface	Measurement Examples	Summary

- iGp is installed or has been tested in the following machines:
 - DAΦNE: two systems, transverse feedback;
 - Photon Factory (KEK): one system, longitudinal feedback.

- Gproto tests:
 - PEP-II transverse feedback;
 - KEKB transverse feedback;
 - ATF damping ring longitudinal feedback;
 - DAΦNE transverse feedback;
 - PEP-II bunch-by-bunch luminosity monitor.

System overview	Features ●ooooooo	User Interface	Measurement Examples	Summary
Outline				

・ロト ・ 同ト ・ ヨト ・ ヨト

3

System overview

- Introduction
- Operating experience

2 Features

• Specification highlights

- Architecture
- Important features
- Front and Back End

3 User Interface

- Controls
- Diagnostics
- 4 Measurement Examples
 - Photon Factory
 - Ο ΟΑΦΝΕ

Features o●○○○○○○ User Interface

Measurement Examples

iGp Specifications

Design goals:

- Reliability;
- Maintainability;
- Ease of use;
- Diagnostics.
- FPGA based processing:
 - Flexible;
 - Field upgradable.

Specifications

Bunch spacing \geq 1.9 ns

Harmonic number 64–5120

ADC resolution 8 bits

DAC resolution 12 bits

Feedback filter 16-tap FIR

Downsampling 1-32

DAQ memory 8 MB

Digital GPIO 32 channels

・ロト ・ 理 ト ・ ヨ ト ・ ヨ

Slow analog I/O 8 channels

System overview	Features ○○●○○○○○	User Interface	Measurement Examples	Summary
Outline				

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

3

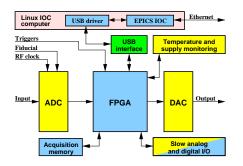
System overview

- Introduction
- Operating experience

2 Features

• Specification highlights

Architecture


- Important features
 Event and Reals Fig.
- Front and Back End

3 User Interface

- Controls
- Diagnostics
- 4 Measurement Examples
 - Photon Factory
 - Ο ΟΑΦΝΕ

System overview		Features	User Interface	Measurement Examples	Summary
•	-				

System Block Diagram

- Real-time processing in the FPGA.
- Low-rate (≤ 10 Hz) diagnostics via USB.
- 8 MB memory:
 - Data acquisition in normal operation;
 - Can be used for grow/damps, other diagnostics;
 - Internal or external data acquisition triggers.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ

System overview	Features ○○○○●○○○	User Interface	Measurement Examples	Summary
Outline				

- System overview
 - Introduction
 - Operating experience

2 Features

- Specification highlights
- Architecture
- Important features
- Front and Back End
- 3 User Interface
 - Controls
 - Diagnostics
- 4 Measurement Examples
 - Photon Factory
 - Ο ΟΑΦΝΕ

・ロト ・ 理 ト ・ ヨ ト ・ ヨ

System overview	Features ○○○○○●○○	User Interface	Measurement Examples	Summary
Important F	eatures			

- ADC and DAC timing adjustment with 10 ps step size.
 - Eliminates the need for mechanical delay lines.
- High bandwidth
 - 1.26 GHz input bandwidth;
 - 212 and 328 ps output rise and fall times.
- Self-test program for verifying system health.
 - Generated report can be compared to factory results using "diff".
- User-friendly IOC setup program
 - With a series of windows leads the user through network setup, date/time setting, and IOC name.

・ロト ・四ト ・ヨト ・ヨト ・ ヨ

System overview	Features ○○○○○●○○	User Interface	Measurement Examples	Summary
Important F	eatures			

- ADC and DAC timing adjustment with 10 ps step size.
 - Eliminates the need for mechanical delay lines.
- High bandwidth
 - 1.26 GHz input bandwidth;
 - 212 and 328 ps output rise and fall times.
- Self-test program for verifying system health.
 - Generated report can be compared to factory results using "diff".
- User-friendly IOC setup program
 - With a series of windows leads the user through network setup, date/time setting, and IOC name.

System overview	Features ○○○○●○○	User Interface	Measurement Examples	Summary
Important F	eatures			

- ADC and DAC timing adjustment with 10 ps step size.
 - Eliminates the need for mechanical delay lines.
- High bandwidth
 - 1.26 GHz input bandwidth;
 - 212 and 328 ps output rise and fall times.
- Self-test program for verifying system health.
 - Generated report can be compared to factory results using "diff".
- User-friendly IOC setup program
 - With a series of windows leads the user through network setup, date/time setting, and IOC name.

System overview	Features ○○○○●○○	User Interface	Measurement Examples	Summary
Important F	eatures			

- ADC and DAC timing adjustment with 10 ps step size.
 - Eliminates the need for mechanical delay lines.
- High bandwidth
 - 1.26 GHz input bandwidth;
 - 212 and 328 ps output rise and fall times.
- Self-test program for verifying system health.
 - Generated report can be compared to factory results using "diff".
- User-friendly IOC setup program
 - With a series of windows leads the user through network setup, date/time setting, and IOC name.

System overview	Features ○○○○●○○	User Interface	Measurement Examples	Summary
Important F	eatures			

- ADC and DAC timing adjustment with 10 ps step size.
 - Eliminates the need for mechanical delay lines.
- High bandwidth
 - 1.26 GHz input bandwidth;
 - 212 and 328 ps output rise and fall times.
- Self-test program for verifying system health.
 - Generated report can be compared to factory results using "diff".
- User-friendly IOC setup program
 - With a series of windows leads the user through network setup, date/time setting, and IOC name.

System overview	Features ○○○○○○●○	User Interface	Measurement Examples	Summary
Outline				

・ロト ・ 理 ト ・ ヨ ト ・ ヨ

Outline

- System overview
 - Introduction
 - Operating experience

2 Features

- Specification highlights
- Architecture
- Important features
- Front and Back End
- 3 User Interface
 - Controls
 - Diagnostics
- Measurement Examples
 - Photon Factory
 - Ο ΟΑΦΝΕ

System overview	Features ○○○○○○●	User Interface	Measurement Examples	Summary
Front/Back-	end Unit			

• Currently under development.

- 2U 19" rackmount chassis, just like the iGp.
- 1.4 GHz front-end detection frequency.
- Combiner-based 4-cycle comb generator.
- 892 MHz back-end frequency.
- Integrated control via iGp GPIO:
 - Front and back-end LO phase shifters;
 - Front and back-end attenuators.
- Can be adapted for the ALS:
 - 1.5 GHz detection;
 - 1 GHz output.

System overview	Features ○○○○○○●	User Interface	Measurement Examples	Summary
Front/Bac	k-and I Init			

- Currently under development.
- 2U 19" rackmount chassis, just like the iGp.
- 1.4 GHz front-end detection frequency.
- Combiner-based 4-cycle comb generator.
- 892 MHz back-end frequency.
- Integrated control via iGp GPIO:
 - Front and back-end LO phase shifters;
 - Front and back-end attenuators.
- Can be adapted for the ALS:
 - 1.5 GHz detection;
 - 1 GHz output.

System overview	Features ○○○○○○●	User Interface	Measurement Examples	Summary
Front/Back-	end Unit			

- Currently under development.
- 2U 19" rackmount chassis, just like the iGp.
- 1.4 GHz front-end detection frequency.
- Combiner-based 4-cycle comb generator.
- 892 MHz back-end frequency.
- Integrated control via iGp GPIO:
 - Front and back-end LO phase shifters;
 - Front and back-end attenuators.
- Can be adapted for the ALS:
 - 1.5 GHz detection;
 - 1 GHz output.

System overview	Features ○○○○○○●	User Interface	Measurement Examples	Summary
Front/Back-	end Unit			

- Currently under development.
- 2U 19" rackmount chassis, just like the iGp.
- 1.4 GHz front-end detection frequency.
- Combiner-based 4-cycle comb generator.
- 892 MHz back-end frequency.
- Integrated control via iGp GPIO:
 - Front and back-end LO phase shifters;
 - Front and back-end attenuators.
- Can be adapted for the ALS:
 - 1.5 GHz detection;
 - 1 GHz output.

System overview	Features ○○○○○○●	User Interface	Measurement Examples	Summary
Front/Back-	end Unit			

- Currently under development.
- 2U 19" rackmount chassis, just like the iGp.
- 1.4 GHz front-end detection frequency.
- Combiner-based 4-cycle comb generator.
- 892 MHz back-end frequency.
- Integrated control via iGp GPIO:
 - Front and back-end LO phase shifters;
 - Front and back-end attenuators.
- Can be adapted for the ALS:
 - 1.5 GHz detection;
 - 1 GHz output.

System overview	Features ○○○○○○●	User Interface	Measurement Examples	Summary
Front/Back-	end Unit			

- Currently under development.
- 2U 19" rackmount chassis, just like the iGp.
- 1.4 GHz front-end detection frequency.
- Combiner-based 4-cycle comb generator.
- 892 MHz back-end frequency.
- Integrated control via iGp GPIO:
 - Front and back-end LO phase shifters;
 - Front and back-end attenuators.
- Can be adapted for the ALS:
 - 1.5 GHz detection;
 - I GHz output.

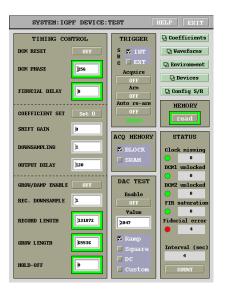
System overview	Features	User Interface ●000000	Measurement Examples	Summary
Outline				

- System overview
 - Introduction
 - Operating experience
- 2 Features
 - Specification highlights
 - Architecture
 - Important features
 - Front and Back End
- 3 User Interface
 - Controls
 - Diagnostics
- 4 Measurement Examples
 - Photon Factory
 - Ο ΟΑΦΝΕ

・ ロ ト ・ 雪 ト ・ 目 ト ・

System overview	Features 00000000	User Interface ○●○○○○○	Measurement Examples	Summary
Top-Level F	Panel			

SYSTEM: IGPF	DEVICE: TEST	HELP EXIT
	FEEDBACK ON	
	다 setup	


- Top-level panel is kept very simple on purpose.
- One control: feedback on/off.
- Error summary:
 - Green no errors;
 - Yellow warning (saturation);

・ロト ・ 理 ト ・ ヨ ト ・ ヨ

• Red - error.

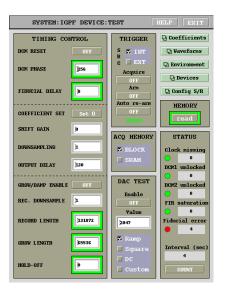
System over	view	Features 00000000	User Interface oo●oooo	Measurement Examples	Summary
-					

Control Panel

Controls:

- Timing;
- Feedback;
- Data acquisition;

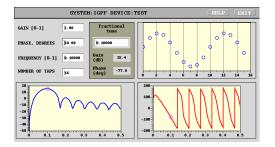
• Status:


- RF clock;
- FPGA DCMs (digital clock managers);

- Saturation;
- Fiducial.

System overvie	ew	Features 00000000	User Interface	Measurement Examples	Summary

Control Panel


- Controls:
 - Timing;
 - Feedback;
 - Data acquisition;
- Status:
 - RF clock;
 - FPGA DCMs (digital clock managers);

- Saturation;
- Fiducial.

System overview	Features 00000000	User Interface	Measurement Examples	Summary

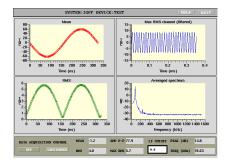
- Integrated filter generator and analyzer.
- Computes frequency response.
- Gain and phase readout at the tune frequency.
- Filter tuning made easy.

・ ロ ト ・ 雪 ト ・ 国 ト ・ 日 ト

э

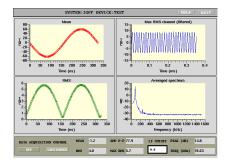
System overview	Features	User Interface	Measurement Examples	Summary
Outline				

- System overview
 - Introduction
 - Operating experience
- 2 Features


- Specification highlights
- Architecture
- Important features
- Front and Back End
- 3 User Interface
 - Controls
 - Diagnostics
- 4
- Measurement Examples
- Photon Factory
- Ο ΟΑΦΝΕ

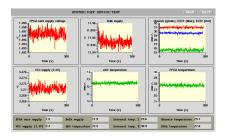
・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

	Disalari			
System overview	Features	User Interface ○○○○●○	Measurement Examples	Summary


- From bunch data matrix to vectors:
 - Bunch-by-bunch mean and RMS;
 - Time record of the most unstable bunch;
 - Averaged spectrum.
- From vectors to scalars for stripcharting:
 - Mean;
 - Overall and maximum RMS;
 - Peak-to-peak amplitude;
 - Spectral peak frequency and magnitude.

イロト イポト イヨト イヨト 三日

	D'aulau			
System overview	Features ೦೦೦೦೦೦೦೦	User Interface ○○○○○●○	Measurement Examples	Summary


- From bunch data matrix to vectors:
 - Bunch-by-bunch mean and RMS;
 - Time record of the most unstable bunch;
 - Averaged spectrum.
- From vectors to scalars for stripcharting:
 - Mean;
 - Overall and maximum RMS;
 - Peak-to-peak amplitude;
 - Spectral peak frequency and magnitude.

・ロト ・ 同ト ・ ヨト ・ ヨト

3

System overview	Features 00000000	User Interface ○○○○○●	Measurement Examples	Summary
System H	ealth			

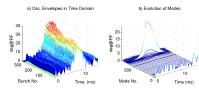
- Built-in monitoring of supply voltages and system temperatures.
- Voltages:
 - FPGA core;
 - Global 3.3 V;
 - Bulk supply (12 V).
- Temperatures:
 - ADC;
 - FPGA;
 - Board temperature;

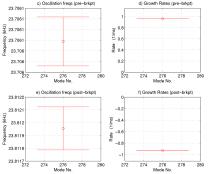
A D > A P > A D > A D >

• ECL clock delays.

э

System overview	Features 00000000	User Interface	Measurement Examples ●ooo	Summary
Outline				


- System overview
 - Introduction
 - Operating experience
- 2 Features
 - Specification highlights
 - Architecture
 - Important features
 - Front and Back End
- 3 User Interface
 - Controls
 - Diagnostics
- Measurement Examples
 Photon Factory
 DAONE



 System overview
 Features
 User Interface
 Measurement Examples
 Summary

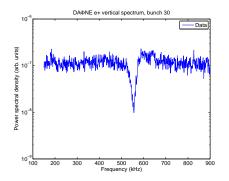
 00000
 0000000
 0●00

Photon Factory Longitudinal Grow/Damp

PF:jun3007/215154: lo= 200mA, Dsamp= 1, ShifGain= 0, Nbun= 312, At Fs: G1= 0.10338, G2= 0.1723, Ph1= 65.515, Ph2= 65.5215, Brkpt= 20000, Calib= 1.

- A test as a longitudinal feedback.
- 500.1 MHz RF, 312 bunches.
- Growth and damping rates of 1 ms⁻¹.

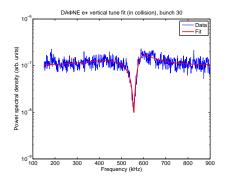
(日)


System overview	Features 00000000	User Interface	Measurement Examples	Summary
Outline				

- System overview
 - Introduction
 - Operating experience
- 2 Features
 - Specification highlights
 - Architecture
 - Important features
 - Front and Back End
- 3 User Interface
 - Controls
 - Diagnostics
- Measurement Examples
 Photon Factory
 - DAΦNE

・ロト ・ 理 ト ・ ヨ ト ・ ヨ

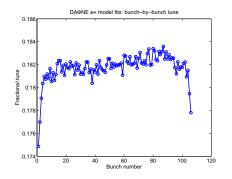
DAΦNE Steady-state Recording


- Vertical feedback in the positron ring.
- 368 MHz, 120 bunches.
- Bunch spectrum shows a notch due to feedback action.
- Fit the spectrum using the feedback/beam model.
- Extract bunch-by-bunch tunes.

(日)

• Completely parasitic!

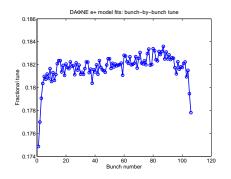
DAΦNE Steady-state Recording


- Vertical feedback in the positron ring.
- 368 MHz, 120 bunches.
- Bunch spectrum shows a notch due to feedback action.
- Fit the spectrum using the feedback/beam model.
- Extract bunch-by-bunch tunes.

・ロット (雪) (日) (日)

• Completely parasitic!

DAΦNE Steady-state Recording


- Vertical feedback in the positron ring.
- 368 MHz, 120 bunches.
- Bunch spectrum shows a notch due to feedback action.
- Fit the spectrum using the feedback/beam model.
- Extract bunch-by-bunch tunes.

・ロット (雪) (日) (日)

• Completely parasitic!

DAΦNE Steady-state Recording

- Vertical feedback in the positron ring.
- 368 MHz, 120 bunches.
- Bunch spectrum shows a notch due to feedback action.
- Fit the spectrum using the feedback/beam model.
- Extract bunch-by-bunch tunes.

(日)

Completely parasitic!

System overview	Features 00000000	User Interface	Measurement Examples	Summary
Summary				

- iGp is a proven bunch-by-bunch feedback and diagnostic platform.
- Integrated tools make for extremely simple system configuration and maintenance.
- Powerful diagnostics provide real-time stability and performance tracking.
- Direct interface to sophisticated Matlab analysis tools for machine studies.

System overview	Features 00000000	User Interface	Measurement Examples	Summary
Summary				

- iGp is a proven bunch-by-bunch feedback and diagnostic platform.
- Integrated tools make for extremely simple system configuration and maintenance.
- Powerful diagnostics provide real-time stability and performance tracking.
- Direct interface to sophisticated Matlab analysis tools for machine studies.

System overview	Features 00000000	User Interface	Measurement Examples	Summary
Summary				

- iGp is a proven bunch-by-bunch feedback and diagnostic platform.
- Integrated tools make for extremely simple system configuration and maintenance.
- Powerful diagnostics provide real-time stability and performance tracking.
- Direct interface to sophisticated Matlab analysis tools for machine studies.

System overview	Features 00000000	User Interface	Measurement Examples	Summary
Summary				

- iGp is a proven bunch-by-bunch feedback and diagnostic platform.
- Integrated tools make for extremely simple system configuration and maintenance.
- Powerful diagnostics provide real-time stability and performance tracking.
- Direct interface to sophisticated Matlab analysis tools for machine studies.

