
Digital Low-level RF Demonstration at LNLS UVX
LLRF9 demo, June 8–12, 2015

D. Teytelman2, et. al.

2Dimtel, Inc., San Jose, CA, USA

July 20, 2015

(Dimtel) iGp12 LNLS 1 / 31



Setup LLRF9 Introduction

Outline

1 Setup
LLRF9 Introduction
Demo Setup and Schedule

2 LLRF Characterization
Frequency Domain
Time Domain

3 Stability Measurements
Thermal
Without beam
With beam

4 Precision Calibrations

5 Phase Noise

(Dimtel) iGp12 LNLS 2 / 31



Setup LLRF9 Introduction

LLRF9 System

A single 2U chassis for one-
and two-cavity RF control;
9 input RF channels, 2 RF
outputs;
Tuner motor control via RS-
485/Ethernet/EPICS/analog
output;
External interlock daisy-chain;
Two external trigger inputs;
Eight opto-isolated baseband
ADC channels for slow
interlocks.
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Setup Demo Setup and Schedule

Demo Setup: Booster

Set up LLRF9 to run the booster RF with the following signals:
RF reference (476 MHz)
Cavity probe signal (476 MHz)
Cavity forward signal (476 MHz)
Cavity reflected signal (476 MHz)
Drive output (476 MHz)
Ramp trigger (TTL)
Tuner speed control (±7.5 V slow DAC)
Tuner position potentiometer (0–10 V slow ADC)
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Setup Demo Setup and Schedule

Demo Setup: Storage Ring

Set up LLRF9 to run both storage ring RF stations with the
following signals:

RF reference (476 MHz)
For each RF station:

Cavity probe signal (476 MHz)
Cavity forward signal (476 MHz)
Cavity reflected signal (476 MHz)
Cavity probe monitor (476 MHz)
Drive output (476 MHz)
Tuner speed control (±7.5 V slow DAC)
Tuner position potentiometer (0–10 V slow ADC)
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Setup Demo Setup and Schedule

Progress

Monday, June 8th
Booster setup: inputs first to establish signal levels;
Connected drive output, configured feedback loops;
Established closed-loop operation in CW mode.

Tuesday, June 9th
Interfaced LLRF9 tuner control loops to booster motor control;
Established closed-loop operation of the tuner loop;
Ran booster with beam, adjusted for maximum efficiency;
Started storage ring setup, configured station A.

Wednesday, June 10th
Completed storage ring configuration;
Tried operation with beam, some dynamic difficulties;
Left RF stations operating overnight (no beam) to collect stability
data.
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Setup Demo Setup and Schedule

Progress (Continued)

Thursday, June 11th
Analyzed LLRF setup and found proper configuration for operation
with beam;
Training (Station A setup by Felipe Santiago);
Injected beam around 17:00, left to coast overnight.

Friday, June 12th
Synchrotron tune tracking exploration;
Time and frequency domain characterization;
Phase noise studies;
Switched back to analog LLRF;
Injected beam around 19:00, left to coast overnight.

Saturday, June 13th
Hardware removal;
Bunch-by-bunch feedback experiments.
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LLRF Characterization Frequency Domain
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LLRF Characterization Frequency Domain

Open Loop Transfer Function

∑ Error
Feedback

RF
cavity

DisturbancesSetpoint and excitation

Cavity field probe

Measured from setpoint to the
cavity probe;
Feedback block in open loop has
no dynamics, just gain and phase
shift;
Open loop cavity response;
Fit resonator model to extract
gain, loaded Q,
Extremely useful for configuring
the feedback loops, tuner loops,
general diagnostics.
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LLRF Characterization Frequency Domain

Open Loop Transfer Function
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LLRF Characterization Frequency Domain

Closed Loop Transfer Functions

∑ Error
Feedback

RF
cavity

DisturbancesSetpoint and excitation

Cavity field probe

Measured from setpoint to the error
signal;
Shows attenuation at frequencies
where feedback has gain;
Perturbations at the input of the cavity
are rejected with the same transfer
function;
Proportional only;
Proportional and integral, much
higher rejection at low frequencies;
Easier to see with the logarithmic
frequency scale.
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LLRF Characterization Frequency Domain

Closed Loop Transfer Functions
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LLRF Characterization Time Domain

Step Response
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Ramp start triggers waveform
acquisition;
Ramp profile loaded with a 10%
amplitude step (230 to 253 kV);
Open loop: phase shift (AM-PM in
power stage), setpoint error;
Closed loop response is much faster,
as expected;
A bit too much gain, overshoot seen;
Prominent ripple due to SSA power
supply switching at 190 kHz.
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LLRF Characterization Time Domain

Pulse Response

0 50 100 150 200 250
0

2

4

6

8

10

12

Time (µs)

k
V

Probe

0 50 100 150 200 250
105

110

115

120

125

Time (µs)

D
e
g
re

e
s

Probe

0 50 100 150 200 250
0

0.01

0.02

0.03

0.04

0.05

Time (µs)

k
W

Reflected

0 50 100 150 200 250
−200

−150

−100

−50

0

Time (µs)

D
e
g
re

e
s

Reflected

0 50 100 150 200 250
0

0.005

0.01

0.015

0.02

Time (µs)

k
W

Forward

0 50 100 150 200 250
110

120

130

140

150

160

Time (µs)

D
e
g
re

e
s

Forward

Open-loop pulse response, cavity A;
Base 2 kV, pulse 20 kV;
Larger reflected power peak at the
falling edge, expected for coupling
factor β > 1;
Phase slope during pulse decay
indicates the cavity is slightly detuned.
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Stability Measurements Thermal

Thermal Stability: Lab Measurements
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9 internal sensors on cold plate: 6
NTCs, 3 DS18B20 digital sensors;
Three temperature stabilization loops
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Thermal Stability: LNLS Measurements
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Recorded over 2 days;
Diurnal temperature variation clearly
seen in out of loop sensors and
Peltier control signals;
Out of loop NTC sensors show
0.22 ◦C peak-to-peak variation.
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Stability Measurements Without beam

Field Stability 1: LLRF9 without beam
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Stability Measurements With beam

Field Stability 2: LLRF9 With Beam

06/11 16:48 06/11 21:36 06/12 02:24 06/12 07:12 06/12 12:00
249.5

249.6

249.7

249.8

249.9

250

250.1

Time

C
a

v
it
y
 f

ie
ld

 (
k
V

)

Cavity 1, peak−to−peak variation 0.03%/0.19% probe/monitor

 

 

06/11 16:48 06/11 21:36 06/12 02:24 06/12 07:12 06/12 12:00
249.5

249.6

249.7

249.8

249.9

250

250.1

Time

C
a

v
it
y
 f

ie
ld

 (
k
V

)

Cavity 2, peak−to−peak variation 0.02%/0.06% probe/monitor

 

 

Probe

Monitor

Probe

Monitor

Overnight run, beam current
decaying from 250 mA, 1.37 GeV;
Masked data between 0:00 and
1:26 corresponds to longitudinal
tune tracking studies;
Similar stability of in-loop signals;
Monitor channels show
significantly more variation than
feedback channels;
Worst-case peak-to-peak range is
0.2% and 0.06◦.
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Field Stability 2: LLRF9 With Beam
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frequency to keep forward in
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Dead band of 0.3◦ is evident.
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Stability Measurements With beam
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Stability Measurements With beam

Field Stability 3: Analog LLRF
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decaying from 250 mA, 1.37 GeV;
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LLRF9 is only monitoring;
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stations A and B.
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Stability Measurements With beam

Field Stability 2: Analog LLRF
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during coasting;
Phase loop should keep forward
phase constant;
Tuner loop should adjust cavity
frequency to keep probe in phase
with the forward;
Cavity 1 seems to have poor
phase loop regulation;
Cavity 2 has better phase loop
regulation, but poor tuner loop
control.
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Precision Calibrations

The Plan

Use open-loop transfer functions to determine Ql for each cavity;
Use design R/Q values, known unloaded quality factors;
From ωs vs. Vc studies establish precise probe calibrations;
Use zero current and beam data to calibrate forward power
channels;
For proper reflected power calibration need to quantify coupler
directivity.
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Precision Calibrations

Cavity Parameters
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Precision Calibrations

Probe Calibration
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Scanned cavity 1 field down to
170 kV, captured synchrotron tune
using LFB tune tracking;
Fit ωs to total voltage Vg
assuming:

Stations are in phase (phased
earlier to maximize ωs);
Momentum compaction, beam
energy, energy loss per turn as
published.

Obtain scaling factors for existing
calibrations.
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Precision Calibrations

Power Calibration Without Beam

17:06:43 17:06:51 17:07:00 17:07:09 17:07:17 17:07:26 17:07:35 17:07:43
40

60

80

100

120

140

160

180

200

220

240

Time

V
o

lt
a

g
e

 (
k
V

)

17:06:43 17:06:51 17:07:00 17:07:09 17:07:17 17:07:26 17:07:35 17:07:43
0

2

4

6

8

10

12

Time

P
o

w
e

r 
(k

W
)

Correction factors: fwd=1.3180, rev=1.1396
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REV calc

Calculate cavity operating point
from freshly calibrated probe
signal
Assuming on-resonance tuning
here, could include transient
detuning;
Cavity 2 transient deviations are
due to slower tuner response.
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Precision Calibrations

Power Calibration Without Beam

17:17:13 17:17:22 17:17:31 17:17:39 17:17:48 17:17:57 17:18:05 17:18:14
40

60

80

100

120

140

160

180

200

220

240

Time

V
o

lt
a

g
e

 (
k
V

)

17:17:13 17:17:22 17:17:31 17:17:39 17:17:48 17:17:57 17:18:05 17:18:14
0

1

2

3

4

5

6

7

8

9

10

Time

P
o

w
e

r 
(k

W
)

Correction factors: fwd=0.9195, rev=0.5930

 

 

FWD corr

FWD calc

REV corr

REV calc

Calculate cavity operating point
from freshly calibrated probe
signal
Assuming on-resonance tuning
here, could include transient
detuning;
Cavity 2 transient deviations are
due to slower tuner response.

(Dimtel) iGp12 LNLS 28 / 31



Precision Calibrations

Power Calibration Check With Beam
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Calculate operating points based
on cavity fields and phases, beam
current, all other accelerator
parameters;
Machine setup: EPU and 2T
wiggler @ 22 mm, SCW @ 4 T;
Matching forward power requires:

Offsetting station phases by 2
degrees;
Reducing energy loss per turn
by 13 keV (132.33 keV).

Reflected power is skewed by
finite coupler directivity.
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Phase Noise

Standard Master Oscillator

Absolute phase noise
measurements with
Rohde&Schwartz FSUP
Master oscillator
reference, −123 dBc/Hz
@25 kHz;
Cavity 1, 250 kV, fb
optimized, −121 dBc/Hz
@25 kHz;
Cavity 2, 250 kV, fb
optimized, −122 dBc/Hz
@25 kHz.
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Phase Noise

Quiet Master Oscillator

Much quieter reference,
145 fs vs. 1.67 ps,
−137 dBc/Hz @25 kHz;
Cavity 1 probe, 250 kV, fb
optimized, −134 dBc/Hz
@25 kHz;
Cavity 2 probe, 250 kV, fb
optimized, −132 dBc/Hz
@25 kHz.
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Phase Noise

Quiet Master Oscillator, Analog LLRF

Cavity 1 probe,
−107 dBc/Hz @25 kHz;
Cavity 2 probe,
−105 dBc/Hz @25 kHz.
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Summary

Summary

Successfully operated booster RF station with beam;
Operated two storage ring stations using one LLRF9/476 unit;
Demonstrated stable operation through full machine cycle from
injection to ramping, ID closure, and coasting;
LLRF9/476 has much lower (27 dB) cavity field phase noise in the
vicinity of the synchrotron frequency;
Modulation capabilities of LLRF9 were used to apply quadrupole
modulation to stored beam;
Precise measurements of cavity signals enable better RF
calibrations and determinations of accelerator parameters.
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