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Power Amplifier Compensation

BESSY II Vertical Amplifier Response
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Optimal timing 100 ps with isolation of 11.9 dB
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Timing shift sensitivity: isolation 9.4 dB at 200 ps offset

Drive the single bunch at the
betatron frequency;
Adjust back-end delay;
Record betatron oscillation
magnitude;
Optimal timing has 11.9 dB
isolation;
Can extract impulse response of
the DAC/amplifier/kicker chain.
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BESSY II Vertical Amplifier Response
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BESSY−II Y: single−bunch drive response

Drive the single bunch at the
betatron frequency;
Adjust back-end delay;
Record betatron oscillation
magnitude;
Optimal timing has 11.9 dB
isolation;
Can extract impulse response of
the DAC/amplifier/kicker chain.
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A Solution: Kick Shaping Filter

Z−1

Z−1

y[n]C0

1

C2

x[n] A 3-tap FIR filter at frf;
Kick for a given bunch can
be coupled to the
neighboring buckets;
We are pre-distorting
amplifier drive signal to
compensate for its
response.
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Power Amplifier Compensation

BESSY II Vertical Amplifier: FIR Shaper
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Optimal timing 1900 ps with isolation of 18.6 dB
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Timing shift sensitivity: isolation 11.0 dB at −200 ps offset

 

 

Response
−200 ps offset
−100 ps offset
0 ps offset
100 ps offset
200 ps offset

Response with shaper FIR
[−0.3 1 0.15];
Isolation improved to 18.6 dB;
Compare with the impulse
response derived signal.
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Power Amplifier Compensation

BESSY II Vertical Amplifier: FIR Shaper
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BESSY−II Y: single−bunch response with shaping

 

 
Measured
Calculated

Response with shaper FIR
[−0.3 1 0.15];
Isolation improved to 18.6 dB;
Compare with the impulse
response derived signal.
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Power Amplifier Compensation

BESSY II Vertical Amplifier: Optimized FIR Shaper
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Optimal timing 1800 ps with isolation of 23.4 dB
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Timing shift sensitivity: isolation 12.3 dB at 200 ps offset

 

 

Response
−200 ps offset
−100 ps offset
0 ps offset
100 ps offset
200 ps offset

Using the measured impulse
response, optimize shaping
coefficients and timing;

Isolation vs. Config
No shaping 11.9 dB

Empirically optimized 18.6 dB
Numeric optimization 23.4 dB
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Power Amplifier Compensation

TLS Horizontal Amplifier: Optimized FIR Shaper
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a) Optimal timing 700 ps with isolation of 11.5 dB
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b) Optimal timing 200 ps with isolation of 18.8 dB

Horizontal response at the
Taiwan Light Source;
Same power amplifier
model as in BESSY II;
Optimization predicts
−23.2 dB coupling,
measured −18.8 dB.
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b) Optimal timing 200 ps with isolation of 18.8 dB

Horizontal response at the
Taiwan Light Source;
Same power amplifier
model as in BESSY II;
Optimization predicts
−23.2 dB coupling,
measured −18.8 dB.
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Power Amplifier Compensation

TLS Horizontal Amplifier: Optimized FIR Shaper
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Computed
Measured

Horizontal response at the
Taiwan Light Source;
Same power amplifier
model as in BESSY II;
Optimization predicts
−23.2 dB coupling,
measured −18.8 dB.
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Beam Transfer Function

Measurement Approach

New single-bunch
acquisition engine
captures 96k
samples for one
bunch together with
excitation signal;
From excitation and
response signals,
frequency domain
transfer function can
be estimated.
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Beam Transfer Function

A Few Examples from TLS
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Beam Transfer Function

A Few Examples from TLS
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Horizontal plane, bunch 50, standard fill at 50 mA

 

 

Open loop
Closed loop

Time-domain
response,
horizontal, open
loop
Frequency domain
transfer function
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Beam Transfer Function

A Few Examples from TLS
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Beam Transfer Function

A Few Examples from TLS
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Beam Transfer Function

BTF: Interesting Questions So Far

Measurement is often difficult due to tune modulation;
In low energy machines, long damping times can interfere
with the measurements;
Amplitude-dependent tune shift creates BTF asymmetry

Use the asymmetry to measure the tune shift?

Finding combinations of excitation frequency spans, sweep
periods, and amplitudes for reliable BTF measurement is
not well understood.
Sweep direction is important — needs further study.
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Selective Transient Excitation

General Approach

Modulate excitation signal
on/off together with
transient measurements;
Example from ANKA: 20
bunches driven for 4 ms
with feedback turned off;
Bunch 15 spectrogram;
Excitation sweeps through
the betatron frequency.
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Selective Transient Excitation

Measuring Stable Eigenmodes: ANKA X, 2.5 GeV

Set up constant frequency
excitation to drive mode -1;
Excitation is on during
normal running, off during
growth period;
Feedback is also off —
measuring open loop
trajectory of one mode;
Can measure slow or
stable eigenmodes.
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Selective Transient Excitation

Measuring Stable Eigenmodes: ANKA X, 2.5 GeV
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Set up constant frequency
excitation to drive mode -1;
Excitation is on during
normal running, off during
growth period;
Feedback is also off —
measuring open loop
trajectory of one mode;
Can measure slow or
stable eigenmodes.
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Selective Transient Excitation

Measuring Stable Eigenmodes: ANKA X, 2.5 GeV
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Set up constant frequency
excitation to drive mode -1;
Excitation is on during
normal running, off during
growth period;
Feedback is also off —
measuring open loop
trajectory of one mode;
Can measure slow or
stable eigenmodes.
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Selective Transient Excitation

Mode to Mode Differences: ANKA X, 2.5 GeV
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Mode −1, 1.6 ms−1

Mode 91, 2.9 ms−1

Mode 0, 2.2 ms−1 Three transients, modes 0,
91, and -1;
Fits scaled to the same
starting point;
Expect slower damping for
mode -1, driven by the
resistive wall impedance;
Actual data is less
convincing.



Feedback Performance Optimization New Bunch-by-Bunch Diagnostics

Selective Transient Excitation

Mode to Mode Differences: ANKA X, 2.5 GeV
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Selective Transient Excitation

Mode to Mode Differences: ANKA X, 2.5 GeV
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Mode 0
Mode 91
Mode −1 Three transients, modes 0,

91, and -1;
Fits scaled to the same
starting point;
Expect slower damping for
mode -1, driven by the
resistive wall impedance;
Actual data is less
convincing.
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Automated Grow/Damp Analysis

BESSY II Horizontal Grow/Damp Measurement

Horizontal grow/damp at -3.0
units, 245 mA, no camshaft;
Mode -1;
Very fast damping;
Excellent fit.
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Automated Grow/Damp Analysis

BESSY II Horizontal Grow/Damp Measurement
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Horizontal grow/damp at -3.0
units, 245 mA, no camshaft;
Mode -1;
Very fast damping;
Excellent fit.



Feedback Performance Optimization New Bunch-by-Bunch Diagnostics

Automated Grow/Damp Analysis

BESSY II Horizontal Growth Rates vs. Chromaticity
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BESSY−II horizontal: mode −1 growth rates vs. chromaticity

A lot of scatter at higher
growth rates;
Need to collect many
measurements to really
quantify dependencies;
Automated analysis of 61
measurements, no
cleanup.
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Automated Grow/Damp Analysis

LNLS Longitudinal Growth Rates
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LNLS: mode 121 growth rates vs. beam current, 1.37 GeV

 

 

Drive/open loop
G/D 2012−04−04
G/D 2012−04−05, ID closed
G/D 2012−04−05, ID open

A total of 208 data sets;
High confidence in the
growth rates;
2 GB of data collected over
two days.
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LNLS Longitudinal Growth Rates
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2 GB of data collected over
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Automated Grow/Damp Analysis

Summary

Kick signal pre-distortion can significantly improve
feedback system performance;
Beam transfer function measurements might offer
interesting beam dynamics information beyond the simple
harmonic oscillator model;
Modulated excitation feature can be used to systematically
map modal eigenvalues;
Fast data acquisition and automated post-processing are
critical for quantifying instabilities and determining
acceptable operating conditions.
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