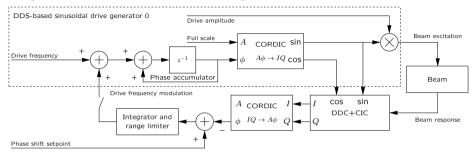
Beam Transfer Function Studies in SPEAR3

Kai Tian¹, Jim Sebek¹, D. Teytelman²

¹SSRL, SLAC, Menlo Park, CA, USA ²Dimtel, Inc., San Jose, CA, USA

March 12, 2020

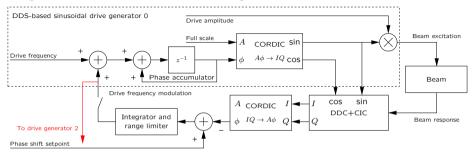

SPEAR3 BTF

Technology

Understanding Tracking Data

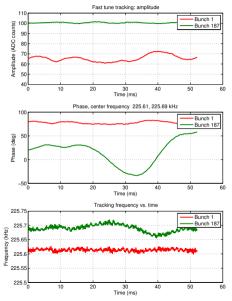
Response Fitting

Single Bunch Phase Tracking



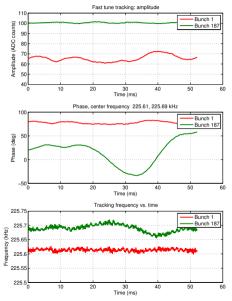
SPEAR3 BTF

Technology


- A single bunch is excited with a sinusoidal excitation;
- Response is detected relative to the excitation to determine the phase shift;
- In closed loop, phase tracker adjusts the excitation frequency to maintain the desired phase shift value;
- Adjustable integration time, tracking range, loop gain.

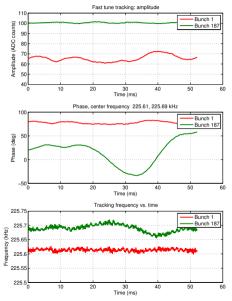
Single Bunch Phase Tracking

Technology


- Dual drive generators, each exciting one bunch;
- Drive generator 0 is under closed-loop tracking;
- Drive generator 2 can be configured to follow the tracking signal;
- Allows for adjustable offset in drive 2 while following common-mode tune jitter.

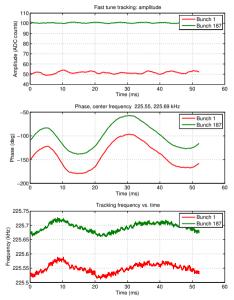
- Closed-loop tracking on bunch 187;
 - Pure sinusoidal excitation of bunch 1;
- Significant amplitude variation;
- Drive 2 following enabled;
- Amplitude is stabilized for both bunches;
- Can measure beam transfer function magnitude for bunch 1 by scanning drive frequency.

SPEAR3 BTF


Technology

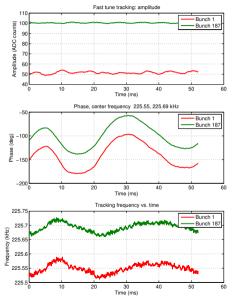
- Closed-loop tracking on bunch 187;
- Pure sinusoidal excitation of bunch 1;
- Significant amplitude variation;
- Drive 2 following enabled;
- Amplitude is stabilized for both bunches;
- Can measure beam transfer function magnitude for bunch 1 by scanning drive frequency.

SPEAR3 BTF


Technology

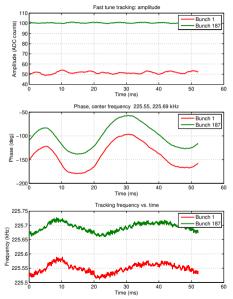
- Closed-loop tracking on bunch 187;
- Pure sinusoidal excitation of bunch 1;
- Significant amplitude variation;
- Drive 2 following enabled;
- Amplitude is stabilized for both bunches;
- Can measure beam transfer function magnitude for bunch 1 by scanning drive frequency.

SPEAR3 BTF


Technology

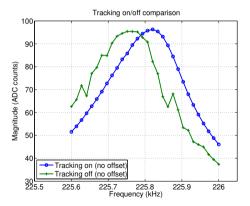
- Closed-loop tracking on bunch 187;
- Pure sinusoidal excitation of bunch 1;
- Significant amplitude variation;
- Drive 2 following enabled;
- Amplitude is stabilized for both bunches;
- Can measure beam transfer function magnitude for bunch 1 by scanning drive frequency.

SPEAR3 BTF

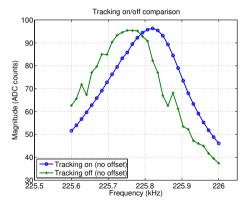

Technology

- Closed-loop tracking on bunch 187;
- Pure sinusoidal excitation of bunch 1;
- Significant amplitude variation;
- Drive 2 following enabled;
- Amplitude is stabilized for both bunches;
- Can measure beam transfer function magnitude for bunch 1 by scanning drive frequency.

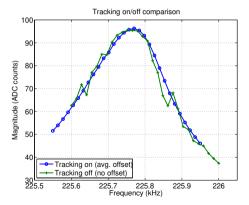
SPEAR3 BTF


Technology

- Closed-loop tracking on bunch 187;
- Pure sinusoidal excitation of bunch 1;
- Significant amplitude variation;
- Drive 2 following enabled;
- Amplitude is stabilized for both bunches;
- Can measure beam transfer function magnitude for bunch 1 by scanning drive frequency.

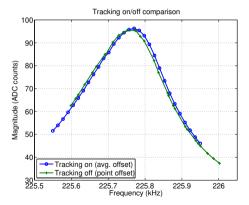

SPEAR3 BTF

Technology


- Average magnitude plotted vs. drive frequency;
- Offset due to DC average in tune tracker correction;
- Drive 0 is set to 225.744 kHz, closed loop 225.69 kHz;
- Add average tracker offset to drive 2 frequency in tracking on state;
- Drive 2 tracking off correction:
 - Estimate how much the tune moved away from the average (tracking frequency offset without DC);
 - ► Subtract that value from drive 2 frequency.

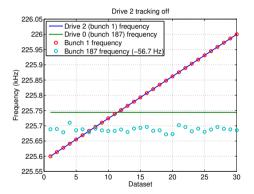
Technology

- Average magnitude plotted vs. drive frequency;
- Offset due to DC average in tune tracker correction;
- Drive 0 is set to 225.744 kHz, closed loop 225.69 kHz;
- Add average tracker offset to drive 2 frequency in tracking on state;
- Drive 2 tracking off correction:
 - Estimate how much the tune moved away from the average (tracking frequency offset without DC);
 - Subtract that value from drive 2 frequency. イロン・クレイミン・ミーションのへの


Technology

- Average magnitude plotted vs. drive frequency;
- Offset due to DC average in tune tracker correction;
- Drive 0 is set to 225.744 kHz, closed loop 225.69 kHz;
- Add average tracker offset to drive 2 frequency in tracking on state;
 - Drive 2 tracking off correction:
 - Estimate how much the tune moved away from the average (tracking frequency offset without DC);
 - ► Subtract that value from drive 2 frequency.

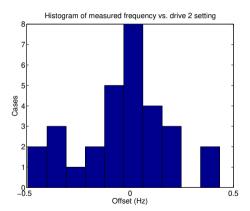
SPEAR3 BTF


Technology

- Average magnitude plotted vs. drive frequency;
- Offset due to DC average in tune tracker correction;
- Drive 0 is set to 225.744 kHz, closed loop 225.69 kHz;
- Add average tracker offset to drive 2 frequency in tracking on state;
- Drive 2 tracking off correction:
 - Estimate how much the tune moved away from the average (tracking frequency offset without DC);
 - Subtract that value from drive 2 frequency.

SPEAR3 BTF

Technology

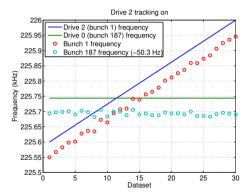


Drive 2 tracking is off;

- Algorithm extracts the same frequency for bunch 1 as drive 2 setting;
- Drive 2 tracking is on;
- Very good estimation still, standard deviation of the frequency shift difference between 1 and 187 is 0.08 Hz.

SPEAR3 BTF

Technology

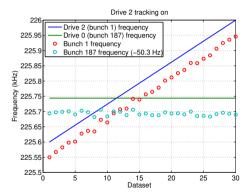

Drive 2 tracking is off;

- Algorithm extracts the same frequency for bunch 1 as drive 2 setting;
- Drive 2 tracking is on;
- Very good estimation still, standard deviation of the frequency shift difference between 1 and 187 is 0.08 Hz.

SPEAR3 BTF

Technology

Understanding Tracking Data Looking at Systematics

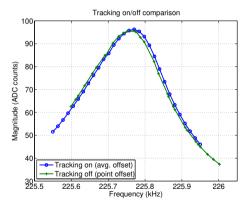


- Drive 2 tracking is off;
- Algorithm extracts the same frequency for bunch 1 as drive 2 setting;
- Drive 2 tracking is on;
- Very good estimation still, standard deviation of the frequency shift difference between 1 and 187 is 0.08 Hz.

SPEAR3 BTF

Technology

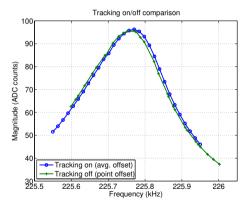
Understanding Tracking Data Looking at Systematics



- Drive 2 tracking is off;
- Algorithm extracts the same frequency for bunch 1 as drive 2 setting;
- Drive 2 tracking is on;
- Very good estimation still, standard deviation of the frequency shift difference between 1 and 187 is 0.08 Hz.

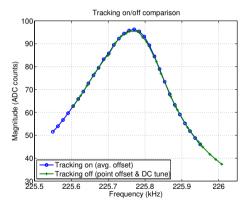
SPEAR3 BTF

Technology

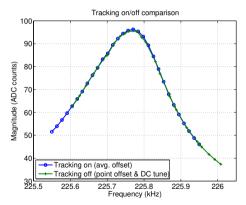

Understanding Tracking Data Looking at Systematics

- Average tracker offset changes from -50.3 to -56.7 Hz between the two scans;
- Slow tune drifts?
- Corrected the drive 2 tracking off scan by 6.4 Hz;
- Almost on top of each other, some loss near the peak;
- Fast tune jitter in SPEAR3 is relatively small;
- Dual tracking is still critical to remove sensitivity to slow common-mode drifts.

SPEAR3 BTF

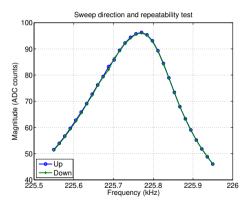

Technology

- Average tracker offset changes from -50.3 to -56.7 Hz between the two scans;
- Slow tune drifts?
- Corrected the drive 2 tracking off scan by 6.4 Hz;
- Almost on top of each other, some loss near the peak;
- Fast tune jitter in SPEAR3 is relatively small;
- Dual tracking is still critical to remove sensitivity to slow common-mode drifts.


SPEAR3 BTE

Technology

- Average tracker offset changes from -50.3 to -56.7 Hz between the two scans;
- Slow tune drifts?
- Corrected the drive 2 tracking off scan by 6.4 Hz;
- Almost on top of each other, some loss near the peak;
- Fast tune jitter in SPEAR3 is relatively small;
- Dual tracking is still critical to remove sensitivity to slow common-mode drifts.

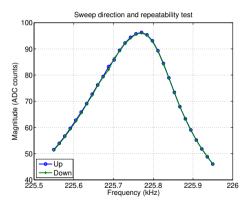

Technology

- Average tracker offset changes from -50.3 to -56.7 Hz between the two scans;
- Slow tune drifts?
- Corrected the drive 2 tracking off scan by 6.4 Hz;
- Almost on top of each other, some loss near the peak;
- Fast tune jitter in SPEAR3 is relatively small;
- Dual tracking is still critical to remove sensitivity to slow common-mode drifts.

SPEAR3 BTF

Technology

Good agreement between the two scans;

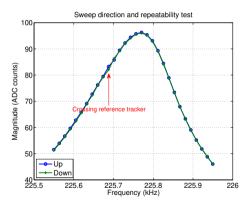

- No clear systematic difference between sweep directions;
- Noisy data when crossing bunch 187 tracking point;
- Coupling between the bunches leads to beating;
- Source of the coupling is unclear.

SPEAR3 BTF

Technology

Understanding Tracking Data

Looking at Systematics

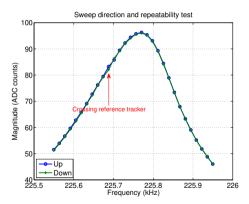

- Good agreement between the two scans;
- No clear systematic difference between sweep directions;
- Noisy data when crossing bunch 187 tracking point;
- Coupling between the bunches leads to beating;
- Source of the coupling is unclear.

SPEAR3 BTF

Technology

Understanding Tracking Data

Looking at Systematics

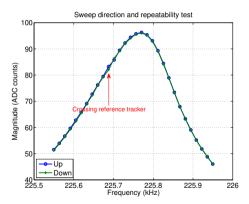

- Good agreement between the two scans;
- No clear systematic difference between sweep directions;
- Noisy data when crossing bunch 187 tracking point;
- Coupling between the bunches leads to beating;
- Source of the coupling is unclear.

SPEAR3 BTF

Technology

Understanding Tracking Data

Looking at Systematics

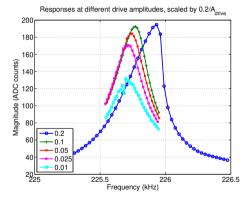

- Good agreement between the two scans;
- No clear systematic difference between sweep directions;
- Noisy data when crossing bunch 187 tracking point;
- Coupling between the bunches leads to beating;
- Source of the coupling is unclear.

SPEAR3 BTF

Technology

Understanding Tracking Data

Looking at Systematics

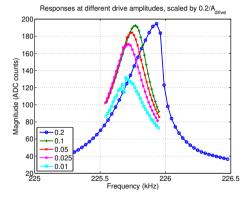

- Good agreement between the two scans;
- No clear systematic difference between sweep directions;
- Noisy data when crossing bunch 187 tracking point;
- Coupling between the bunches leads to beating;
- Source of the coupling is unclear.

SPEAR3 BTF

Technology

Understanding Tracking Data

Looking at Systematics

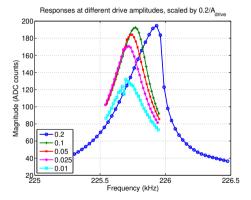

Frequency scanned up in each case;

- Responses in agreement below resonance at amplitudes from 0.025 to 0.1;
- Nonlinear oscillator behavior with strong amplitude dependent tune shift at 0.2 drive level;
- Fairly symmetric response at 0.01 drive, noisy point near tracker crossing (amplitude imbalance).

SPEAR3 BTF

Technology

Understanding Tracking Data Looking at Systematics

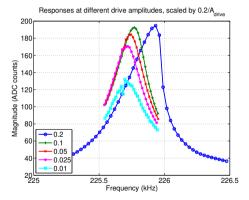

- Frequency scanned up in each case;
- Responses in agreement below resonance at amplitudes from 0.025 to 0.1;
- Nonlinear oscillator behavior with strong amplitude dependent tune shift at 0.2 drive level;
- Fairly symmetric response at 0.01 drive, noisy point near tracker crossing (amplitude imbalance).

SPEAR3 BTF

Technology

Understanding Tracking Data

Looking at Systematics

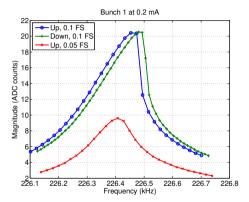

- Frequency scanned up in each case;
- Responses in agreement below resonance at amplitudes from 0.025 to 0.1;
- Nonlinear oscillator behavior with strong amplitude dependent tune shift at 0.2 drive level;
- Fairly symmetric response at 0.01 drive, noisy point near tracker crossing (amplitude imbalance).

SPEAR3 BTF

Technology

Understanding Tracking Data

Looking at Systematics


- Frequency scanned up in each case;
- Responses in agreement below resonance at amplitudes from 0.025 to 0.1;
- Nonlinear oscillator behavior with strong amplitude dependent tune shift at 0.2 drive level;
- Fairly symmetric response at 0.01 drive, noisy point near tracker crossing (amplitude imbalance).

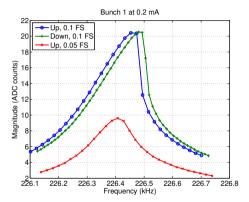
SPEAR3 BTF

Technology

Understanding Tracking Data

Looking at Systematics

Filled bunches 1 and 187 to 0.2 and 2 mA;

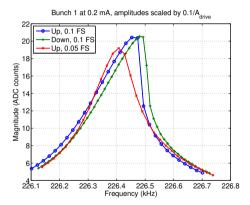

- Hysteresis vs. sweep direction;
- More symmetric at lower amplitude;
- Need to check more carefully response vs. drive amplitude (fitting?).

SPEAR3 BTF

Technology

Understanding Tracking Data

Looking at Systematics

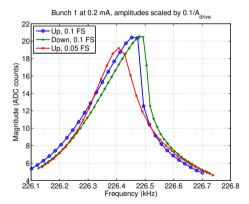

- Filled bunches 1 and 187 to 0.2 and 2 mA;
- Hysteresis vs. sweep direction;
- More symmetric at lower amplitude;
- Need to check more carefully response vs. drive amplitude (fitting?).

SPEAR3 BTF

Technology

Understanding Tracking Data

Looking at Systematics


- Filled bunches 1 and 187 to 0.2 and 2 mA;
- Hysteresis vs. sweep direction;
- More symmetric at lower amplitude;
- Need to check more carefully response vs. drive amplitude (fitting?).

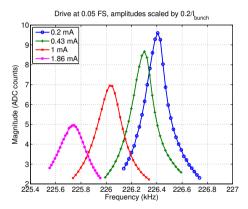
SPEAR3 BTF

Technology

Understanding Tracking Data

Looking at Systematics

- Filled bunches 1 and 187 to 0.2 and 2 mA;
- Hysteresis vs. sweep direction;
- More symmetric at lower amplitude;
- Need to check more carefully response vs. drive amplitude (fitting?).


SPEAR3 BTF

Technology

Understanding Tracking Data

Looking at Systematics

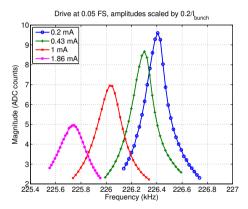
Beam Transfer Functions Vs. Bunch Current

 Downward tune shift vs. current;

- Wider peak at higher currents;
- From the amplitude scan at 1.86 mA we know that 0.05 drive level is too high.

SPEAR3 BTF

Technology


Understanding Tracking Data

Looking at Systematics

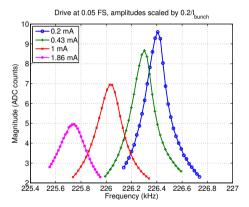
Response Fitting

▲ロト▲母ト▲ヨト▲ヨト ヨーのへで

Beam Transfer Functions Vs. Bunch Current

- Downward tune shift vs. current;
- Wider peak at higher currents;
- From the amplitude scan at 1.86 mA we know that 0.05 drive level is too high.

SPEAR3 BTF


Technology

Understanding Tracking Data

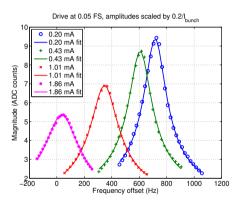
Looking at Systematics

Response Fitting

Beam Transfer Functions Vs. Bunch Current

- Downward tune shift vs. current;
- Wider peak at higher currents;
- From the amplitude scan at 1.86 mA we know that 0.05 drive level is too high.

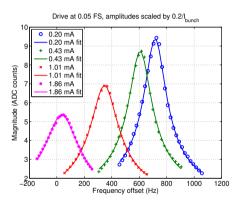
SPEAR3 BTF


Technology

Understanding Tracking Data

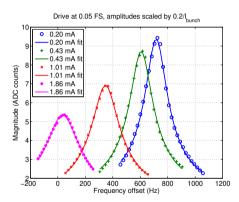
Looking at Systematics

Response Fitting


▲□▶▲□▶▲□▶▲□▶ ■ のへで

- The only meaningful frequency axis is the difference between the two drive sources;
- Fit harmonic oscillator response with noise floor;
- All fits show asymmetry drive level too high?
- Extract center frequency, magnitude, damping time vs bunch current;
- Error sources:
 - Four fills, reference bunch (187) current changes;
 - Bunch 1 current estimated;
 - Amplitude dependent shifts

SPEAR3 BTF

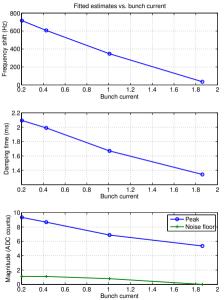

Technology

- The only meaningful frequency axis is the difference between the two drive sources;
- Fit harmonic oscillator response with noise floor;
- All fits show asymmetry drive level too high?
- Extract center frequency, magnitude, damping time vs bunch current;
- Error sources:
 - Four fills, reference bunch (187) current changes;
 - Bunch 1 current estimated;
 - Amplitude dependent shifts

SPEAR3 BTF

Technology

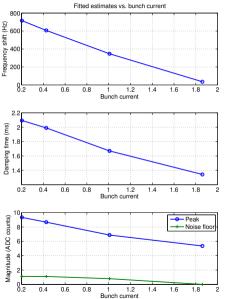
 The only meaningful frequency axis is the difference between the two drive sources; SPEAR3 BTE


Understanding Tracking

Response Fitting

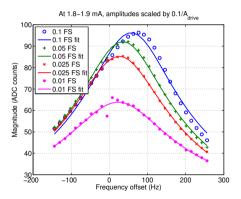
Technoloav

Data


- Fit harmonic oscillator response with noise floor;
- All fits show asymmetry drive level too high?
- Extract center frequency, magnitude, damping time vs. bunch current;
- Error sources:
 - Four fills, reference bunch (187) current changes;
 - Bunch 1 current estimated;
 - Amplitude dependent shifts

- The only meaningful frequency axis is the difference between the two drive sources;
- Fit harmonic oscillator response with noise floor;
- All fits show asymmetry drive level too high?
- Extract center frequency, magnitude, damping time vs. bunch current;
 - Error sources:
 - Four fills, reference bunch (187) current changes;
 - Bunch 1 current estimated;
 - Amplitude dependent shifts

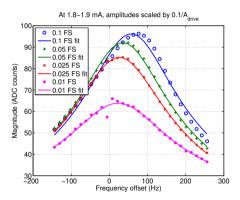
SPEAR3 BTF


Technology

- The only meaningful frequency axis is the difference between the two drive sources;
- Fit harmonic oscillator response with noise floor;
- All fits show asymmetry drive level too high?
- Extract center frequency, magnitude, damping time vs. bunch current;
- Error sources:
 - Four fills, reference bunch (187) current changes;
 - Bunch 1 current estimated;
 - Amplitude dependent shifts.

SPEAR3 BTF

Technology

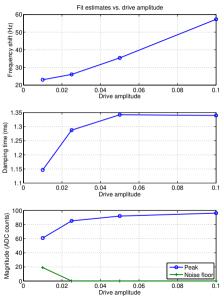

Clear asymmetry at 0.1 and 0.05;

- Reasonably symmetric at 0.025 and 0.01;
- Amplitude dependent tune shift present at all drive levels;
- Changes in damping time reflect asymmetry?

SPEAR3 BTF

Technology

Understanding Tracking Data

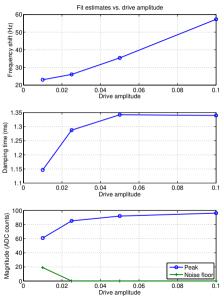

- Clear asymmetry at 0.1 and 0.05;
- Reasonably symmetric at 0.025 and 0.01;
- Amplitude dependent tune shift present at all drive levels;
- Changes in damping time reflect asymmetry?

SPEAR3 BTF

Technology

Understanding Tracking Data

ooking at Systematics


- Clear asymmetry at 0.1 and 0.05;
- Reasonably symmetric at 0.025 and 0.01;
- Amplitude dependent tune shift present at all drive levels;
 - Changes in damping time reflect asymmetry?

SPEAR3 BTF

Technology

Understanding Tracking Data

-ooking at Systematics

- Clear asymmetry at 0.1 and 0.05;
- Reasonably symmetric at 0.025 and 0.01;
- Amplitude dependent tune shift present at all drive levels;
- Changes in damping time reflect asymmetry?

SPEAR3 BTF

Technology

Understanding Tracking Data

ooking at Systematics

Successfully tested "follow the tracker" mode;

- Different information vs. dual tracker tests;
- Changes of the beam transfer function with amplitude and bunch current mean that dual tracker mode is sensitive to mismatches in gain;

Avoiding systematics:

- Keep bunch current low;
- Measure at different drive levels to project to zero drive point;
- Dual trackers miss complex BTF evolution, likely source of systematic errors.
- Discussion...

SPEAR3 BTF

Technology

Understanding Tracking Data Looking at Systematics Response Fitting

・ロト・日本・日本・日本・日本・日本

- Successfully tested "follow the tracker" mode;
- Different information vs. dual tracker tests;
- Changes of the beam transfer function with amplitude and bunch current mean that dual tracker mode is sensitive to mismatches in gain;
- Avoiding systematics:
 - Keep bunch current low;
 - Measure at different drive levels to project to zero drive point;
 - Dual trackers miss complex BTF evolution, likely source of systematic errors.
- Discussion...

SPEAR3 BTF

Technology

Understanding Tracking Data Looking at Systematics

- Successfully tested "follow the tracker" mode;
- Different information vs. dual tracker tests;
- Changes of the beam transfer function with amplitude and bunch current mean that dual tracker mode is sensitive to mismatches in gain;
- Avoiding systematics:
 - Keep bunch current low;
 - Measure at different drive levels to project to zero drive point;
 - Dual trackers miss complex BTF evolution, likely source of systematic errors.
- Discussion...

SPEAR3 BTF

Technology

Understanding Tracking Data

- Successfully tested "follow the tracker" mode;
- Different information vs. dual tracker tests;
- Changes of the beam transfer function with amplitude and bunch current mean that dual tracker mode is sensitive to mismatches in gain;
- Avoiding systematics:
 - Keep bunch current low;
 - Measure at different drive levels to project to zero drive point;
 - Dual trackers miss complex BTF evolution, likely source of systematic errors.
- Discussion...

SPEAR3 BTF

Technology

Understanding Tracking Data

Response Fitting

- Successfully tested "follow the tracker" mode;
- Different information vs. dual tracker tests;
- Changes of the beam transfer function with amplitude and bunch current mean that dual tracker mode is sensitive to mismatches in gain;
- Avoiding systematics:
 - Keep bunch current low;
 - Measure at different drive levels to project to zero drive point;
 - Dual trackers miss complex BTF evolution, likely source of systematic errors.
- Discussion...

SPEAR3 BTF

Technology

Understanding Tracking Data

- Successfully tested "follow the tracker" mode;
- Different information vs. dual tracker tests;
- Changes of the beam transfer function with amplitude and bunch current mean that dual tracker mode is sensitive to mismatches in gain;
- Avoiding systematics:
 - Keep bunch current low;
 - Measure at different drive levels to project to zero drive point;
 - Dual trackers miss complex BTF evolution, likely source of systematic errors.
- Discussion...

SPEAR3 BTF

Technology

Understanding Tracking Data

- Successfully tested "follow the tracker" mode;
- Different information vs. dual tracker tests;
- Changes of the beam transfer function with amplitude and bunch current mean that dual tracker mode is sensitive to mismatches in gain;
- Avoiding systematics:
 - Keep bunch current low;
 - Measure at different drive levels to project to zero drive point;
 - Dual trackers miss complex BTF evolution, likely source of systematic errors.
- Discussion...

SPEAR3 BTF

Technology

Understanding Tracking Data