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Plant behavior (state) can
be affected by an actuator.
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u

r

y

Take a household heating
system as an example.

Our plant is the house.
Actuator - furnace.
Sensor - thermistor.
Controller - thermostat.

Loop signals
Output y - temperature;
Input u - heated air from
the furnace;
Reference r -
temperature setpoint.
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Mechanical system: mass
on a spring with a damper.
Described by
Mẍ + γẋ + Kx = F .
Differential equation is a
time-domain description.
Frequency domain -
Laplace transform.
Frequency response
evaluated at s = iω.
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In modern accelerators active feedback is used to
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Bunch-by-bunch Feedback

Definition
In bunch-by-bunch feedback approach the actuator signal for a
given bunch depends only on the past motion of that bunch.

Controller

Beam Kicker structure

Back−endFront−end

SensorBPM Actuator

Bunches are processed sequentially.
Correction kicks are applied one or more turns later.
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Coupled-bunch Instabilities: Eigenmodes and
Eigenvalues

If we consider bunches as coupled harmonic oscillators, a
system of N bunches has N eigenmodes.
Without the wakefields these modes have identical
eigenvalues determined by the tune and the radiation
damping.
wakefields (impedances) shift the modal eigenvalues in
both real part (damping rate) and imaginary part
(oscillation frequency).
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Bunch-by-bunch enable (feedback)

Within the controller we combine two streams: feedback
and excitation;
Bunch-by-bunch masking;
Opens up a wealth of control and diagnostic techniques
that are difficult, if not impossible, with other means.
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Many applications:
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Creating single-bunch fill patterns in storage rings without
single-bunch injection capability;
Creating arbitrary fill patterns for studying detector
responses, etc.
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Apply to these bunches a swept sinewave excitation
centered on the tune frequency;
When excitation sweeps across the betatron resonance,
bunches are driven to large transverse amplitudes and
scraped off;
Excitation frequency sweep must cover the full range of
tune variations with beam current and amplitude.
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Kick a single bucket (2 ns);
DAC, amplifier and striplines
stretch the kick, thus coupling to
the neighboring buckets;
Modulation perturbs the bunches
we want to keep;
Pre-distort the kick to improve the
isolation;
Negative feedback on the
neighboring bunches automatically
settles on the kick pattern that
minimizes the perturbation of
these bunches.
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neighboring bunches automatically
settles on the kick pattern that
minimizes the perturbation of
these bunches.
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stretch the kick, thus coupling to
the neighboring buckets;
Modulation perturbs the bunches
we want to keep;
Pre-distort the kick to improve the
isolation;
Negative feedback on the
neighboring bunches automatically
settles on the kick pattern that
minimizes the perturbation of
these bunches.
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Pre-distort the kick to improve the
isolation;
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neighboring bunches automatically
settles on the kick pattern that
minimizes the perturbation of
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Duke SR-FEL: Removing Every Fifth Bunch

Excitation in the
vertical plane;
Specified cleaning of
every fifth bucket.
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Bunch Cleaning

MLS: Custom Pattern

With the back-end
optimized see good
isolation bunch-to-bunch;
Spelling MLS in Morse
code here.
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Bunch Cleaning

MLS: Arbitrary Fill Patterns

Adjust the excitation
to achieve relatively
slow bunch cleaning
rate;
A Matlab script trims
the bunches in a
controlled manner.
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TLS: Bunch Purity Measurements

Use optical methods
(single photon
counting) to
characterize the
purity after bunch
cleaning;
Small peaks are due
to multiple light
reflections, not
sattelite bunches.
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Selective Transient Excitation

General Approach

Modulate excitation signal
on/off together with
transient measurements;
Example from ANKA: 20
bunches driven for 4 ms
with feedback turned off;
Bunch 15 spectrogram;
Excitation sweeps through
the betatron frequency.
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Selective Transient Excitation

BESSY II Horizontal Grow/Damp Measurement

Horizontal grow/damp at -3.0
units, 245 mA, no camshaft;
Mode -1;
Very fast damping;
Excellent fit.
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Horizontal grow/damp at -3.0
units, 245 mA, no camshaft;
Mode -1;
Very fast damping;
Excellent fit.
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Selective Transient Excitation

Measuring Stable Eigenmodes: ANKA X, 2.5 GeV

Set up constant frequency
excitation to drive mode -1;
Excitation is on during
normal running, off during
growth period;
Feedback is also off —
measuring open loop
trajectory of one mode;
Can measure slow or
stable eigenmodes.
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Set up constant frequency
excitation to drive mode -1;
Excitation is on during
normal running, off during
growth period;
Feedback is also off —
measuring open loop
trajectory of one mode;
Can measure slow or
stable eigenmodes.
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Set up constant frequency
excitation to drive mode -1;
Excitation is on during
normal running, off during
growth period;
Feedback is also off —
measuring open loop
trajectory of one mode;
Can measure slow or
stable eigenmodes.
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Mode to Mode Differences: ANKA X, 2.5 GeV
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Mode −1, 1.6 ms−1

Mode 91, 2.9 ms−1

Mode 0, 2.2 ms−1

Three transients, modes 0,
91, and -1;
Fits scaled to the same
starting point;
Expect slower damping for
mode -1, driven by the
resistive wall impedance;
Actual data are fairly noisy.
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Three transients, modes 0,
91, and -1;
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starting point;
Expect slower damping for
mode -1, driven by the
resistive wall impedance;
Actual data are fairly noisy.
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Mode to Mode Differences: ANKA X, 2.5 GeV
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Mode 0
Mode 91
Mode −1

Three transients, modes 0,
91, and -1;
Fits scaled to the same
starting point;
Expect slower damping for
mode -1, driven by the
resistive wall impedance;
Actual data are fairly noisy.
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Beam Transfer Function

Measurement Approach

Single-bunch
acquisition engine
captures 96k
samples for one
bunch together with
excitation signal;
From excitation and
response signals,
frequency domain
transfer function can
be estimated.
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A Few Examples from TLS
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Tune Measurement

Parasitic Tune Measurement

Transverse feedback in
DAΦNE operating in the X
plane;
Averaged beam spectrum
(lower right) shows a
notch;
This notch is a key to the
parasitic tune
measurement capability.
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Tune Measurement

Why Is There a Notch?

∑ Error

Transverse position

DisturbancesDetection noise

Feedback Beam

Beam response is resonant
at the tune frequency;
Attenuation of detection
noise by the feedback is
proportional to the loop
gain;
Transfer gain from noise to
the feedback input is 1

1+L(ω)

Maximum attenuation at the
resonance, thus a notch.
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Tune Measurement

Bunch-by-bunch Tunes in DAΦNE
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DAFNE e+ bunch 30 horizontal spectrum, 600 mA, 4−apr−2008

 

 

Data

Start from computing bunch
spectrum;
Fit model beam/feedback
response to the spectrum;
Repeat for all filled bunches;
Convert to fractional tune.
Completely parasitic
measurement of bunch-by-bunch
tunes.
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Data
Fit

Start from computing bunch
spectrum;
Fit model beam/feedback
response to the spectrum;
Repeat for all filled bunches;
Convert to fractional tune.
Completely parasitic
measurement of bunch-by-bunch
tunes.
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Bunch-by-bunch Tunes in DAΦNE
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DAFNE e+ bunch−by−bunch horizontal frequency, 600 mA, 4−apr−2008 Start from computing bunch
spectrum;
Fit model beam/feedback
response to the spectrum;
Repeat for all filled bunches;
Convert to fractional tune.
Completely parasitic
measurement of bunch-by-bunch
tunes.
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measurement of bunch-by-bunch
tunes.
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DAΦNE: Horizontal vs. Vertical
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Two measurements at 420 mA;
Horizontal tune spread is
6.5× 10−3;
Vertical tune spread is
2.8× 10−3.
Horizontal plane shows evidence
of strong electron-cloud
instabilities.



Introduction Beam Control Diagnostics

Tune Measurement

DAΦNE: Horizontal vs. Vertical

0 20 40 60 80 100
0.173

0.1735

0.174

0.1745

0.175

0.1755

0.176

0.1765

Bunch number

F
ra

ct
io

na
l t

un
e

VerPos, I
0
=610 mA, peak−to−peak tune spread 0.0028, timestamp 143023

0 20 40 60 80 100
0

1

2

3

4

5

6

7

8

Bunch number

E
st

im
at

ed
 b

un
ch

 c
ur

re
nt

 (
m

A
)

Two measurements at 420 mA;
Horizontal tune spread is
6.5× 10−3;
Vertical tune spread is
2.8× 10−3.
Horizontal plane shows evidence
of strong electron-cloud
instabilities.



Introduction Beam Control Diagnostics

Tune Measurement

DAΦNE: Horizontal vs. Vertical

0 20 40 60 80 100
0.173

0.1735

0.174

0.1745

0.175

0.1755

0.176

0.1765

Bunch number

F
ra

ct
io

na
l t

un
e

VerPos, I
0
=610 mA, peak−to−peak tune spread 0.0028, timestamp 143023

0 20 40 60 80 100
0

1

2

3

4

5

6

7

8

Bunch number

E
st

im
at

ed
 b

un
ch

 c
ur

re
nt

 (
m

A
)

Two measurements at 420 mA;
Horizontal tune spread is
6.5× 10−3;
Vertical tune spread is
2.8× 10−3.
Horizontal plane shows evidence
of strong electron-cloud
instabilities.
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Tune Measurement

Tune Tracker: General Approach

Turn off feedback for one selected bunch;
Apply low amplitude sinusoidal excitation to that bunch;
Measure the response and extract phase shift between
excitation and response;
Adjust excitation frequency to keep the phase shift
constant;
At some value of the phase shift we will excite the beam on
resonance;
If the tune changes, closed-loop tune tracker follows;
Tune tracking can be slow (1-10 Hz) or fast (kHz).
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Beam Transfer Function and Tracking
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Open loop response has
steep phase slope;
At -90 degrees phase shift
excitation is on resonance;
Negative phase slope —
negative phase tracker gain.
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Open loop response has
steep phase slope;
At -90 degrees phase shift
excitation is on resonance;
Negative phase slope —
negative phase tracker gain.
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Tune Measurement

Tune Tracker: Block Diagram
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Tune Measurement

Slow Tune Tracking in NSLS-II
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Tune tracking loop closed
around −1000 seconds;
Low gain — slow settling;
Once settled, the loop
maintains stable oscillation
amplitude by tracking the
variations in the tune.
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Slow Tune Tracking in ANKA

Slow tracking — 104 turns
integration, 120 Hz
measurement bandwidth;
Spectrogram of the bunch
under tracking control;
Suggestive of periodic tune
variation.



Introduction Beam Control Diagnostics

Tune Measurement

Slow Tune Tracking in ANKA

Slow tracking — 104 turns
integration, 120 Hz
measurement bandwidth;
Spectrogram of the bunch
under tracking control;
Suggestive of periodic tune
variation.



Introduction Beam Control Diagnostics

Tune Measurement

Fast Tune Tracking in ANKA

Fast tracking — 200 turns
integration, 6 kHz
measurement bandwidth;
Spectrogram of the bunch
under tracking control;
100 Hz tune variation
(quadrupole supply ripple).
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Fast tracking — 200 turns
integration, 6 kHz
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Spectrogram of the bunch
under tracking control;
100 Hz tune variation
(quadrupole supply ripple).
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Fast Tune Tracking in the ALS

Fast tracking — 500 turns
integration, 1.3 kHz
measurement bandwidth;
Spectrogram of the bunch
under tracking control;
60 Hz tune variation.
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Fast Tune Tracking in the ALS

Fast tracking — 500 turns
integration, 1.3 kHz
measurement bandwidth;
Spectrogram of the bunch
under tracking control;
60 Hz tune variation.
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Summary

Modern bunch-by-bunch feedback system is capable of
much more than just keeping the beam stable;
Programmable hardware enables a number of
experimental techniques for controlling bunch positions
and currents;
Modern feedback systems provide multiple ways of
monitoring beam dynamics in real time.
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