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Bunch-by-bunch Feedback Setup

FBE-500LT
multi-channel
front/back-end;
iGp12 bunch-by-bunch
feedback processor;
BPMH-20-2G BPM
hybrid;
Inputs: MO reference,
fiducial, 4 buttons;
Outputs: Power
amplifier drive.
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Kickers and Amplifiers

We have tried two different
kickers:

I 30 cm stripline;
I 15 cm stripline.

As well as two power
amplifiers:

I 100 W R&K A220-100-R;
I 10 W modified Quantum

Technology P3500-10W.

R&K amplifier has limited
bandwidth and significant
ringing, not usable;
Settled on the longer stripline.
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Kick Optimization
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Measuring back-end coupling
from bunch to bunch;
iGp12 drives a single filled
bucket at νx ;
Moving the kick we can
measure coupling to
surrounding RF buckets.
P3500 and 30 cm stripline,
poor isolation of 10 dB due to
reflections in the kicker;
Used back-end shaper filter to
correct for those reflections,
isolation improved to 25 dB;
Both measurements for
comparison.
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Calibration
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Calibration 0.2 counts/µm/mA

With single bunch in the ring,
adjusted steering magnet to
produce horizontal orbit shift;
First recorded horizontal
position with 4 BPM cables
connected to the standard BPM
processor;
Then reconnected
BPMH/FBE-500LT/iGp12 and
recorded ADC readings for the
stored bunch;
Calibration factor
0.2 counts/µm/mA.

(Dimtel) Aichi SR 2018-10-26 5 / 17



Calibration

0 0.5 1 1.5 2 2.5
0

200

400

600

800

1000

1200

1400

Horizontal position (mm)

A
D

C
 r

e
a
d
in

g
 (

c
o
u
n
ts

)

Calibration 0.2 counts/µm/mA

With single bunch in the ring,
adjusted steering magnet to
produce horizontal orbit shift;
First recorded horizontal
position with 4 BPM cables
connected to the standard BPM
processor;
Then reconnected
BPMH/FBE-500LT/iGp12 and
recorded ADC readings for the
stored bunch;
Calibration factor
0.2 counts/µm/mA.

(Dimtel) Aichi SR 2018-10-26 5 / 17



Calibration

0 0.5 1 1.5 2 2.5
0

200

400

600

800

1000

1200

1400

Horizontal position (mm)

A
D

C
 r

e
a
d
in

g
 (

c
o
u
n
ts

)

Calibration 0.2 counts/µm/mA

With single bunch in the ring,
adjusted steering magnet to
produce horizontal orbit shift;
First recorded horizontal
position with 4 BPM cables
connected to the standard BPM
processor;
Then reconnected
BPMH/FBE-500LT/iGp12 and
recorded ADC readings for the
stored bunch;
Calibration factor
0.2 counts/µm/mA.

(Dimtel) Aichi SR 2018-10-26 5 / 17



Calibration

0 0.5 1 1.5 2 2.5
0

200

400

600

800

1000

1200

1400

Horizontal position (mm)

A
D

C
 r

e
a
d
in

g
 (

c
o
u
n
ts

)

Calibration 0.2 counts/µm/mA

With single bunch in the ring,
adjusted steering magnet to
produce horizontal orbit shift;
First recorded horizontal
position with 4 BPM cables
connected to the standard BPM
processor;
Then reconnected
BPMH/FBE-500LT/iGp12 and
recorded ADC readings for the
stored bunch;
Calibration factor
0.2 counts/µm/mA.

(Dimtel) Aichi SR 2018-10-26 5 / 17



Beam Transfer Functions
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Peak −39.1 dB at 1081.7 kHz
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Center phase 69.6 deg @ 1081.7 kHz

Single bunch transfer function
measurement:

I Swept frequency excitation;
I Transfer function estimated

from measured response by
cross-correlation method.

Single bunch at 3 mA;
First bunch in a 110 bunch
train at 301 mA;
A comparison.
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First Instability Suppression

U7 gap at 33 mm;
Feedback off;
Feedback on!
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Grow/Damp Measurement

110 bunches, 277 mA total
current, U7 at 24 mm;
Fast growth and damping of
mode 49 (impedance at
293 + N × 500 MHz);
On short timescales tune is
constant, can extract frequency
and growth/damping rate;
Nicely exponential transients.
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Grow/Damp Measurement
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Growth Rates vs. Undulator Gap: Mode 49
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Mode 49 growth rate vs. undulator gap setting

Instability threshold at 38 mm
gap is 300 mA;
Feedback damping (difference
between open and closed loop)
is nearly constant;
Drop around 33–35 mm is due
to feedback acting reactively,
not adjusted to compensate for
tune shift;
Damping rates were getting
marginal at 26 mm, doubled the
gain.
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Grow/Damp Measurement at 30 mm Gap

At all gap settings below 38 mm
we see mode 49;
Between 28–33 mm we also
observed low-frequency modes
-1 (119) and -4 (116);
Mode -1 is typically driven by
resistive-wall impedance;
Reasonably clean transients,
could measure better in uniform
fill pattern without a gap.
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Grow/Damp Measurement at 30 mm Gap
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At all gap settings below 38 mm
we see mode 49;
Between 28–33 mm we also
observed low-frequency modes
-1 (119) and -4 (116);
Mode -1 is typically driven by
resistive-wall impedance;
Reasonably clean transients,
could measure better in uniform
fill pattern without a gap.
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Growth Rates vs. Undulator Gap
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Mode −1

Mode −2

Mode −4

A lot of scatter in growth rate
measurements;
At 30–31 mm gap, growth rates
for low-frequency modes are
comparable to those of mode
49;
First guess would be to look for
orbit shifts, no obvious
explanation.
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Longitudinal Instabilities

Just an open-loop
observation of unstable
longitudinal motion;
Dominated by mode 3
(impedance at
12.5 + N × 500 MHz).
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Power Stage Estimation: Gain and Kick Angle

Related, but distinct qualities: feedback gain and peak kick angle;
I Required feedback gain depends on maximum instability growth

rates;
I Can often operate with very small kick angle (low shunt

impedance/amplifier power) if there are no significant perturbations;

Peak kick angle is determined by external beam perturbations;
Design procedure: determine required feedback gain based on
known/expected growth rates;
Measure/estimate largest perturbations (injection, etc.);
Size power amplifier and kicker to be linear or mildly saturated
during such perturbations.
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Power Stage Estimation: Kick Output During a
Grow/Damp

0 20 40 60 80 100 120
0

100

200

300

400

500
oct2518/142833: RMS Fbk Sig (Ideal, Saturated), gain@tune = 98.6525, s.gain = 4

Bunch No.

D
S

P
 c

o
u

n
ts

0 0.5 1 1.5 2 2.5

x 10
4

1000

1200

1400

1600

1800

2000

2200

D
S

P
 c

o
u

n
ts

Signal of Bunch w/ Largest Ampl., Io = 277.2

0 0.5 1 1.5 2 2.5

x 10
4

−2000

−1500

−1000

−500

0

500

1000

1500
Ideal and Saturated FB signals of Bunch w/ Largest Ampl.

Sample No.

D
S

P
 c

o
u

n
ts

Feedback output during a
grow/damp (24 mm gap, max
growth rate, 22 µm peak amp.);
Output reaches 73% FS,
saturation point around 30 µm;
Important observation — output
kick contains significant
response to longitudinal motion;
Averaged spectrum —
longitudinal components are
1–2 orders of magnitude larger.
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Feedback output during a
grow/damp (24 mm gap, max
growth rate, 22 µm peak amp.);
Output reaches 73% FS,
saturation point around 30 µm;
Important observation — output
kick contains significant
response to longitudinal motion;
Averaged spectrum —
longitudinal components are
1–2 orders of magnitude larger.
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Power Stage Estimation: Kick Output During an
Injection Transient
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Injection transient, peak amplitude 928 µm

 

 

Bunch 1

Bunch 14 (injected)

Bunch 53

Bunch 74

Injection transient;
Peak amplitude 928 µm, but
short duration;
Feedback output is heavily
saturated (factor of 12.7);
Simple-minded calculation gives
required power to stay linear as
10 ∗ 12.72 = 1613 W;
If we drive all four striplines, we
gain a factor of 4, so only need
4 amplifiers of 100 W each;
R&K A009K251-5050R?
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Improved Filter to Reject Longitudinal Signals
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Standard filter
Synchrotron line is 40 dB higher
than betatron signals,
harmonics 20 dB higher;
Magnitude response of the
standard filter, markers show
betatron tune and first three
synchrotron harmonics;
Less than 20 dB attenuation of
ωs line;
A modified filter gives more than
50 dB suppression.
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Summary

Successfully demonstrated horizontal feedback at Aichi-SR;
With 10 W amplifier (almost) handled all U7 gap settings;
For reliable production operation 2–4 good quality 100 W
amplifiers would be needed;
Existing striplines have poor match, ideally replace with an
updated design;
Multiple horizontal modes respond to U7 gap settings, mechanism
not quite clear yet;
Observed growth rates are easily handled by the bunch-by-bunch
feedback;
Trying the improved filter today would be valuable to learn the
limits of control and power requirements.
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