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RF Transfer Functions

Cavity Transfer Functions

Start from the last measurement we made (2016-12-11);
Open and closed-loop transfer functions measured using a
network analyzer.
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RF Transfer Functions

Measurement Goal and Conditions

The goal is to estimate direct loop gain at the nominal operating
point;
A difficult measurement — need to detect small NWA excitation in
presence of large RF fundamental signal;

Field setpoint 222 kV — as low as possible to reduce fundamental
signal;
Cavity detuned by setting load angle offset to −40◦;
Amplitude and phase loops turned off;
Measurements with direct loop open and closed.

No beam, of course.
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RF Transfer Functions

System Model

∑

Excitation

Cavity field probe

Hfb

Feedback

Klystron and cavity

Hcav(ω)

V1

V2

Cavity response: Hcav(ω) = 2iσω
ω2−2iσω−ω2

r
Ge−i(ω−ωrf)τeiφ0

Five parameters: gain G, damping rate σ, center frequency ωr ,
delay τ , and phase shift φ0;
Feedback response is just gain and phase shift: Hfb(ω) = Gfbeiφfb ;
In open loop estimate the parameters of Hcav(ω);
Two parameter fit (Gfb, φfb) to the closed-loop S21(ω).
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RF Transfer Functions

Wideband Open Loop Transfer Function
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200 kHz span;
Points near the RF frequency
show significant scatter;
For fitting, ignore points in
−0.5–12.25 kHz range around
RF;
Increasing errors at large
offsets;
Near the resonance fit seems
reasonable.
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RF Transfer Functions

Open Loop Transfer Function, 10 kHz Span
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Data

Fit

A good fit (not wideband enough
to reliably estimate delay);
QL is 251414, expected 210000;
Fitted detuning and QL give the
loading angle
tan−1(2ωd QL

ωr
) = −51◦

Suspect at nominal settings
might be running with −21◦

loading angle, not −10◦.
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RF Transfer Functions

Correcting Systematics
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Data

Fit

Magnitude error is most likely
due to RF fundamental
feedthrough: cavity response
rolls off as 1/∆f 2 while NWA IF
filter rolls off as 1/∆f , so error
increases with offset;
180◦ phase shift across the
resonance explains why RF
fundamental subtracts below
the resonance and adds above;
Use linear (in dB) correction
function;
Much closer fit.
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RF Transfer Functions

Fitting and Sensitivity to Q
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Data

Fit

Forcing QL = 210000 worsens
the fit to compensated data;
Even if we use QL = 210000
during initial fitting (used to
extract linear compensation),
final fit is worse;
Full 5 parameter fit still comes
back to higher QL, within
1.6 × 10−5.
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RF Transfer Functions

Closed Loop Transfer Functions
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Open-loop transfer function;
Closed-loop transfer functions
measured at loop gain settings:

4 V;
5 V;
8 V;
10 V.

Some saturation at higher control
voltages;
Nominal direct loop gain is 0.5
(50% increase in Robinson beam
loading limit).
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RF Transfer Functions

Closed Loop Transfer Functions

4 5 6 7 8 9 10
0.4

0.5

0.6

0.7

0.8

0.9

1

Control voltage (V)

L
o

o
p

 g
a

in

 

 

Loop gain vs. control voltage

Nominal operating point

Open-loop transfer function;
Closed-loop transfer functions
measured at loop gain settings:

4 V;
5 V;
8 V;
10 V.

Some saturation at higher control
voltages;
Nominal direct loop gain is 0.5
(50% increase in Robinson beam
loading limit).
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Beam Loss Events: Diagnostics and Analysis

Experimental Setup

Attempted to diagnose beam loss events where RF phase activity
has been observed;
Set up iGp12 (demo unit) and iGp8 to generate abort triggers and
capture longitudinal bunch-by-bunch data during the abort:

iGp8 connected to a front-end channel tuned for amplitude
detection of the BPM sum signal;
Bunch-by-bunch feedback filters are configured to differentiate
bunch currents with 105 turn delay;
iGp12 runs longitudinal feedback with a different front-end channel,
configured for phase detection;
External trigger for iGp12 is generated by iGp8 DAC (105 turn
differentiator), trigger threshold adjusted to detect small drop from a
single bucket.
Pre-trigger acquisition feature of iGp12 is used to capture the
motion both before and after the trigger.

Set up automatic abort data readout, ran overnight.
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External trigger for iGp12 is generated by iGp8 DAC (105 turn
differentiator), trigger threshold adjusted to detect small drop from a
single bucket.
Pre-trigger acquisition feature of iGp12 is used to capture the
motion both before and after the trigger.

Set up automatic abort data readout, ran overnight.
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Beam Loss Events: Diagnostics and Analysis

Beam Loss Event
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Bunch 1

What looks like oscillation is
actually phase wraparound in
the 1.5 GHz phase detector;
Second negative peak is much
smaller due to current loss —
we are measuring ib × sinφb;
Full 360◦ oscillation provides all
the necessary information to
extract the phase signal;
All bunches move together.

(IHEP,JLAB,Dimtel) Beam Loading Studies in BEPC2 2016-12-18 11 / 23



Beam Loss Events: Diagnostics and Analysis

Beam Loss Event

−80 −70 −60 −50 −40 −30 −20 −10 0 10
−100

−80

−60

−40

−20

0

20

Time (ms)

P
h
a
s
e
 (

d
e
g
@

R
F

)

Converted from abort_20161210_075607.txt

−1 −0.8 −0.6 −0.4 −0.2 0 0.2
−100

−80

−60

−40

−20

0

Time (ms)

P
h
a
s
e
 (

d
e
g
@

R
F

)

Bunch 1

What looks like oscillation is
actually phase wraparound in
the 1.5 GHz phase detector;
Second negative peak is much
smaller due to current loss —
we are measuring ib × sinφb;
Full 360◦ oscillation provides all
the necessary information to
extract the phase signal;
All bunches move together.

(IHEP,JLAB,Dimtel) Beam Loading Studies in BEPC2 2016-12-18 11 / 23



Beam Loss Events: Diagnostics and Analysis

Beam Loss Event

−1 −0.8 −0.6 −0.4 −0.2 0
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Time (µs)

P
h

a
s
e

 (
d

e
g

@
R

F
)

075607: Phases of all 119 filled bunches What looks like oscillation is
actually phase wraparound in
the 1.5 GHz phase detector;
Second negative peak is much
smaller due to current loss —
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Full 360◦ oscillation provides all
the necessary information to
extract the phase signal;
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Beam Loss Events: Diagnostics and Analysis

Beam Loss Event (Continued)
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075607: Phase of bunch 1 Excitations every 20 ms;
Fairly large steady-state
excursions (5◦ peak to peak,
0.6◦ RMS);
Excitations seem to get bigger
just before the abort, could be a
coincidence;
Step excitation (HVPS SCRs?);
Synchrotron oscillation after a
step.

(IHEP,JLAB,Dimtel) Beam Loading Studies in BEPC2 2016-12-18 12 / 23



Beam Loss Events: Diagnostics and Analysis

Beam Loss Event (Continued)

−80 −70 −60 −50 −40 −30 −20 −10 0
−10

−8

−6

−4

−2

0

2

4

6

8

10

Time (ms)

P
h

a
s
e

 (
d

e
g

@
R

F
)

075607: Phase of bunch 1 Excitations every 20 ms;
Fairly large steady-state
excursions (5◦ peak to peak,
0.6◦ RMS);
Excitations seem to get bigger
just before the abort, could be a
coincidence;
Step excitation (HVPS SCRs?);
Synchrotron oscillation after a
step.

(IHEP,JLAB,Dimtel) Beam Loading Studies in BEPC2 2016-12-18 12 / 23
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Beam Loss Events: Diagnostics and Analysis
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Beam Loss Events: Diagnostics and Analysis

Beam Loss: Analysis
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075607: Phases of all 119 filled bunches

Exponential beam phase runaway is
a typical signature of high beam
loading Robinson limit;
Using cavity parameters estimated
earlier, at zero loading angle and
without direct feedback the limit is
900 mA (1350 mA with direct
feedback);
For negative loading angles the limit
increases rapidly, for positive — drops
rapidly;
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Exponential beam phase runaway is
a typical signature of high beam
loading Robinson limit;
Using cavity parameters estimated
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Beam Loss Events: Diagnostics and Analysis

Beam Loss: Analysis (Continued)
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Robinson limit (no direct feedback)

Robinson limit (direct loop gain 0.5)

With loading angle of −10◦ (or even
−21◦) there should be no beam
loading limit;
Is it possible the loading angle is
wandering during operation?
Small positive angle (3-4 degrees) are
consistent with loss events observed;
Increasing direct loop gain to 0.96
(10 V) should provide a 30% higher
margin, a good test of the hypothesis;
RF parameters of BEPC2 allow direct
loop operation at gains of 10–30.
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Synchronous Phase Transients

Introduction

The goal was to investigate synchronous phase transients and
their compensation with fill pattern modulation;
Turned out to be a very difficult task: due to the machine dynamics
peak to peak transients are small, in the 0.5–1.5◦ range;
To measure absolute phase to 0.1◦ all reflections, coupling, HOMs
have to be below −71 dB;
After trying many different measurement approaches as well as
different pickups we settled on using iGp12 as a sampling scope;
BPM sum signal was directly connected to the ADC input after
appropriate attenuation;
Could probably get similar or better performance from a wideband
oscilloscope.

(IHEP,JLAB,Dimtel) Beam Loading Studies in BEPC2 2016-12-18 15 / 23



Synchronous Phase Transients

Introduction

The goal was to investigate synchronous phase transients and
their compensation with fill pattern modulation;
Turned out to be a very difficult task: due to the machine dynamics
peak to peak transients are small, in the 0.5–1.5◦ range;
To measure absolute phase to 0.1◦ all reflections, coupling, HOMs
have to be below −71 dB;
After trying many different measurement approaches as well as
different pickups we settled on using iGp12 as a sampling scope;
BPM sum signal was directly connected to the ADC input after
appropriate attenuation;
Could probably get similar or better performance from a wideband
oscilloscope.

(IHEP,JLAB,Dimtel) Beam Loading Studies in BEPC2 2016-12-18 15 / 23



Synchronous Phase Transients

Introduction

The goal was to investigate synchronous phase transients and
their compensation with fill pattern modulation;
Turned out to be a very difficult task: due to the machine dynamics
peak to peak transients are small, in the 0.5–1.5◦ range;
To measure absolute phase to 0.1◦ all reflections, coupling, HOMs
have to be below −71 dB;
After trying many different measurement approaches as well as
different pickups we settled on using iGp12 as a sampling scope;
BPM sum signal was directly connected to the ADC input after
appropriate attenuation;
Could probably get similar or better performance from a wideband
oscilloscope.

(IHEP,JLAB,Dimtel) Beam Loading Studies in BEPC2 2016-12-18 15 / 23



Synchronous Phase Transients

Introduction

The goal was to investigate synchronous phase transients and
their compensation with fill pattern modulation;
Turned out to be a very difficult task: due to the machine dynamics
peak to peak transients are small, in the 0.5–1.5◦ range;
To measure absolute phase to 0.1◦ all reflections, coupling, HOMs
have to be below −71 dB;
After trying many different measurement approaches as well as
different pickups we settled on using iGp12 as a sampling scope;
BPM sum signal was directly connected to the ADC input after
appropriate attenuation;
Could probably get similar or better performance from a wideband
oscilloscope.

(IHEP,JLAB,Dimtel) Beam Loading Studies in BEPC2 2016-12-18 15 / 23



Synchronous Phase Transients

Introduction

The goal was to investigate synchronous phase transients and
their compensation with fill pattern modulation;
Turned out to be a very difficult task: due to the machine dynamics
peak to peak transients are small, in the 0.5–1.5◦ range;
To measure absolute phase to 0.1◦ all reflections, coupling, HOMs
have to be below −71 dB;
After trying many different measurement approaches as well as
different pickups we settled on using iGp12 as a sampling scope;
BPM sum signal was directly connected to the ADC input after
appropriate attenuation;
Could probably get similar or better performance from a wideband
oscilloscope.

(IHEP,JLAB,Dimtel) Beam Loading Studies in BEPC2 2016-12-18 15 / 23



Synchronous Phase Transients

Introduction

The goal was to investigate synchronous phase transients and
their compensation with fill pattern modulation;
Turned out to be a very difficult task: due to the machine dynamics
peak to peak transients are small, in the 0.5–1.5◦ range;
To measure absolute phase to 0.1◦ all reflections, coupling, HOMs
have to be below −71 dB;
After trying many different measurement approaches as well as
different pickups we settled on using iGp12 as a sampling scope;
BPM sum signal was directly connected to the ADC input after
appropriate attenuation;
Could probably get similar or better performance from a wideband
oscilloscope.

(IHEP,JLAB,Dimtel) Beam Loading Studies in BEPC2 2016-12-18 15 / 23



Synchronous Phase Transients

Input Signal and Attenuation
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150by2, 574 mA, 20 dB attenuation

Uniform fill of 150 bunches, 4 ns
spacing;
Time sweep generated by
adjusting digital delay line with
10 ps resolution;
Jumps in the sweep correspond
to binary transitions — delay
stages are not perfect 10-20-40-
80-160-320-640-1280 ps;
Modulated pattern doubles
bunch current for 24 bunches in
the beginning and 24 bunches
in the end of the train;
AM-to-PM conversion.
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Synchronous Phase Transients

Input Signal and Attenuation (Continued)
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150by2 modulated, 682 mA, 20 dB attenuation Phase shift is due to the iGp12
input being overdriven;
BPM signal has much wider
bandwidth than the iGp12 ADC;
To get nearly full-scale ADC
swing, input amplifier is
overdrive by a factor of 2!
Phase shift with amplitude
disappears with additional 8 dB
of attenuation.
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Input Signal and Attenuation (Continued)
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Synchronous Phase Transients

Input Signal and Attenuation (Continued)
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150by2 modulated, 680 mA, 28 dB attenuation Phase shift is due to the iGp12
input being overdriven;
BPM signal has much wider
bandwidth than the iGp12 ADC;
To get nearly full-scale ADC
swing, input amplifier is
overdrive by a factor of 2!
Phase shift with amplitude
disappears with additional 8 dB
of attenuation.
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Synchronous Phase Transients

Delay Line Calibration
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Calibration based on a
measurement of the RF
reference signal;
Optimize delay weights to fit a
pure sinewave;

Bit Nominal Fit
0 10 ps 10.5 ps
1 20 ps 31.2 ps
2 40 ps 46.6 ps
3 80 ps 89.3 ps
4 160 ps 139.3 ps
5 320 ps 341.9 ps
6 640 ps 646.7 ps
7 1280 ps 1212.5 ps
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Synchronous Phase Transients

Bunch Phase and Amplitude Estimation
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Start from individual bunch
signals normalized by their
peak-to-peak amplitude;
Calculate average shape signal;
Fit a 21st order polynomial to the
average;
For each bunch perform a two
parameter fit: time shift and
amplitude scaling;
Result: bunch-by-bunch
currents and phases.
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Synchronous Phase Transients

Uniform Train: Measurement and Simulation
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Measurement

Simulation

Measurement

Simulation

To maximize the transient filled
half the ring (99 bunches in 4 ns
spacing);
RF voltage reduced to 1.08 MV;
Calculated transient using
Pedersen’s small-signal model;
Feature around bucket 60 is due
to an HOM roughly 18 m
downstream.
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Synchronous Phase Transients

Modulated Train: Measurement and Simulation
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Measurement

Simulation

Measurement

Simulation

Modulated fill: 22 bunches at
the beginning and the end of
the train at twice the current;
Expect partial transient
compensation for 55 bunches in
the middle;
Reasonable agreement
between measurements and
simulation.
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Synchronous Phase Transients

Experimental Options for Studying Gap Transients

0 50 100 150 200 250 300 350
0

0.5

1

1.5

2
dec2216/181706: Bunch Current Monitor, Io=388.9299mA, nCM=1

m
A

0 50 100 150 200 250 300 350
−100

−50

0

50

100
Averages of bunch signals

A
D

C
 c

o
u

n
ts

0 50 100 150 200 250 300 350
−10

−5

0

5

10
Synchronous phase (relative to reference oscillator)

bunch number

d
e

g
@

R
F

Nominal fill pattern at the ALS,
reduced beam current (388 mA
instead of 500 mA);
Harmonic cavities tuned in;
15.8 degrees peak-to-peak;
Should detune harmonic
cavities to simplify the analysis;
Can try both current and density
(spacing) modulations.
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Summary

Summary

Measurements of RF system transfer functions suggest low direct
loop gains and unexpected loaded Q;
More careful measurements are needed to better quantify RF
transfer functions and tuning angles;
Phase transients in BEPC2 are small and difficult to measure;
Charge/density modulation seems to work as expected.
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