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e Bunch Train Measurements
e Even Fill Measurements
@ Model Comparison

@ Transverse Measurements



@inaiell Front-end Calibration

Single Bunch
Setup

ADC mean (counts)

Amplitude 97.1 counts, phase shifter sensitivity 0.1676 degrees/count
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@ Move front-end
phase shifter;

@ Record average of
the filled bunch;
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@inaiell Front-end Calibration

: Amplitude 97.1 counts, phase shifter sensitivity 0.1676 degrees/count
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Single Bunch
Setup

Radiation Damping Measurement

Amplitude (deg@RF)

Single bunch damping at 0.5 mA, jan1309/150311
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@ Use positive
feedback to excite
the beam;

@ Feedback goes to
open loop at 4 ms;

@ Estimated radiation
damping time is
36.5 ms;



Radiation Damping Measurement

) Single bunch damping at 0.5 mA, jan1309/150311
Single Bunch ‘

@ Use positive
feedback to excite
the beam;

@ Feedback goes to
open loop at 4 ms;

T T T : . : :
Setup —— Bunch oscillation amplitude|
2.9F —Fit

@ Estimated radiation
damping time is
36.5 ms;
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Time (me) 28.2 ms.

Amplitude (deg@RF)

2.1 Radiation-damping time —36.5 ms




it 3J/ Grow/Damp Measurements

S — R @ Open-loop growth - first
14 ms;

Bunch Train
Measure-
ments
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Grow/Damp Measurements

Mean i ampiues, an1 409140044 @ Open-loop growth - first
0.12
14 ms;
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Bunch Train
Measure-
[UENTS

Grow/Damp Measurements

Amplitude (deg@RF)

Mode 49 amplitude, jan1409/140044
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@ Open-loop growth - first
14 ms;

@ Spectrum is dominated
by a band of modes
around 49;

@ Feedback turns on too
late:

e growth continues after
14 ms;

@ Damping in the end;




Grow/Damp Measurements

Open-loop growth - first
14 ms;
Spectrum is dominated

by a band of modes
» ) Oscilaton frs (pre-brkpl) ) Growth R:ws (pre-bikot) aroun d 49 ;

) Osc. Envelopes in Time Domain b) Evoluion of Modes

Bunch Train
Measure-
[UENTS

=™ @ Feedback turns on too
L S . late:

whe BB, e growth continues after

Damping in the end;
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Growth rate of
0.23ms1;

Damping of 0.12 ms~1.




el d’ Open-loop Damping

@ Roughly uniform filling in
a) Osc. Envelopes in Time Domain b) Evolution of Modes 599 RF buCketS;

@ Use positive feedback to
excite the motion;

Even Fill Mea-
surements




Open-loop Damping

@ Roughly uniform filling in
A 599 RF buckets;

@ Use positive feedback to
excite the motion;

@ Modal spectrum is

Even Fill Mea- H
relatively narrow
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Open-loop Damping

Roughly uniform filling in
o T 599 RF buckets;

@ Use positive feedback to
I excite the motion;

@ Modal spectrum is
relatively narrow

@ 1-3 mode bands;

Even Fill Mea-
surements

Amplitude (deg@RF)
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el d’ Open-loop Damping

Roughly uniform filling in
04 jan1509/140929 Data, Fit and Error for Mode #37 — 599 RF buCketS;

Use positive feedback to
ittty excite the motion;
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Modal spectrum is
relatively narrow

1-3 mode bands;

Fit the open-loop
damping;

Even Fill Mea-
surements
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Open-loop Damping

b) Evolution of Modes

a) Osc. Envelopes in Time Domain
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Roughly uniform filling in
599 RF buckets;

@ Use positive feedback to
excite the motion;

@ Modal spectrum is
relatively narrow

@ 1-3 mode bands;

@ Fit the open-loop
damping;

@ A puzzle - damping rates
are faster than radiation
damping (0.029 ms~'
measured, 0.036 ms—’
computed).



Giomel Beam/Feedback Model

Longitudinal dynamics & feedback
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it 3J} Simulated grow/damp transient

@ Estimate kicker voltage
based on known quantities;

@ For clean grow/damp data
remove back-end saturation;

Model
Comparison




Simulated grow/damp transient

Estimate kicker voltage
based on known quantities;

@ For clean grow/damp data
remove back-end saturation;

@ Fit growth and damping
transients;

e ¢ T @ Damping is also compared

to the analytical formula
A — aefr% Ge:
fo = 2Efh H1b>

Model
Comparison




Model
Comparison

Simulated grow/damp transient

Estimate kicker voltage
based on known quantities;

@ For clean grow/damp data
remove back-end saturation;

@ Fit growth and damping
transients;

@ Damping is also compared
to the analytical formula
A = %Gfb;

@ Estimated kicker voltage is
42 V (expect 178 V).



@inniel Kicker Voltage Discrepancy

jan1309/201826: RMS Fbk Sig (Ideal, Saturated), gain@F's = 151752, sgain =5
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@ Feedback is running
P st st partially saturated;

DSP counts

Model
Comparison
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Ideal and Saturated FS signals of Bunch w/ Largest Amp.




@inniel Kicker Voltage Discrepancy

Model
Comparison

jan1309/201826: RMS Fbk Sig (Ideal, Saturated), gain@F's = 151752, sgain =5
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@ Feedback is running
partially saturated;

@ Low-frequency mode at
1.014 GHz - TWT amplifier
gain drop around 1 GHz;



@inniel Kicker Voltage Discrepancy

Model
Comparison

jan1309/201826: RMS Fbk Sig (Ideal, Saturated), gain@F's = 151752, sgain =5
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Ideal and Saturated FS signals of Bunch w/ Largest Amp.

@ Feedback is running
partially saturated;

@ Low-frequency mode at
1.014 GHz - TWT amplifier
gain drop around 1 GHz;

@ Feedback setup
optimization?



@inniell Vertical Measurements

@ Single-bunch positive
feedback - beam lost;

Transverse
Measure-
ments



@inniell Vertical Measurements

) Osc. Envelopes in Time Domain b) Evolution of Modes

@ Single-bunch positive
feedback - beam lost;

@ Multibunch drive/damp;

Transverse

Measure-
ments



@inniell Vertical Measurements

@ Single-bunch positive
feedback - beam lost;
@ Multibunch drive/damp;

§ @ Mean mode amplitudes
Transverse T e during growth tranSient;

Measure-
ments




@inniell Vertical Measurements

@ Single-bunch positive
feedback - beam lost;
@ Multibunch drive/damp;

@ Mean mode amplitudes
Transverse - - Ve s ’ “ during grOWth tranSient;

Measure-

ents @ Not the lowest frequency,
expected from resistive wall.




@inniell Summary

@ We have demonstrated longitudinal feedback with both
electron and positron beams;

Summary
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@inniell Summary

@ We have demonstrated longitudinal feedback with both
electron and positron beams;

@ Multiple impedances are at play longitudinally;

@ Estimated kicker voltage is low, even fill puzzle;

@ Sitill, for current operating conditions the setup is
sufficient;

@ Successfully demonstrated feedback operation in the
vertical plane.

Summary
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