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Coupled-bunch Instabilities

Resonant structure

Vacuum chamber

nn+1n+2

bunch n bunch n+2n+1bunch

Time

Bunch passing through a resonant
structure excites a wakefield which is
sampled by the following bunches —
a coupling mechanism;
In practice the wakefields have much
longer damping times than illustrated
here;
Longitudinal bunch oscillation→
phase modulation of the wakefield→
slope of the wake voltage sampled by
the following bunches determines the
coupling.
For certain combinations of wakefield
amplitudes and frequencies the
overall system becomes unstable.
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Coupled-bunch Instabilities: Eigenmodes and
Eigenvalues

A system of N bunches (coupled harmonic oscillators) has N
eigenmodes;
From symmetry considerations we find that the eigenmodes
correspond to Fourier vectors;
Mode number m describes the number of oscillation periods over
one turn;
Wakefields affect the modal eigenvalues in both real (growth rate)
and imaginary (oscillation frequency) parts;
Motion of bunch k oscillating in mode m is given by:
Ame2πkm/NeΛmt

I Am — modal amplitude;
I Λm — complex modal eigenvalue.
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Modal Oscillation Example

Harmonic number of 8;
Top plot — mode 1;
Bottom — mode 7;
All bunches oscillate at the
same amplitude and frequency,
but different phases;
Cannot distinguish modes m
and N −m (or −m) from a
single turn snapshot.
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Modal Oscillation With Damping

Same modes with damping.
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Coupled-bunch Instabilities: Eigenvalues and
Impedances

Beam interacts with wakefields (impedances in frequency domain)
at synchrotron or betatron sidebands of revolution harmonics;
Impedance functions are aliased, since they are sampled by the
beam;

Longitudinal: Λm = (−λ‖rad + iωs) +
παef 2

rf I0
E0hωs

Z ‖eff(mω0 + ωs);

Effective impedance: Z ‖eff(ω) =
∑∞

p=−∞
pωrf+ω
ωrf

Z ‖(pωrf + ω)

Transverse: Λm = (−λ⊥rad + iωβ)− cefrevI0
2ωβE0

Z⊥eff(mω0 + ωβ)

Effective impedance: Z⊥eff(ω) =
∑∞

p=−∞ Z⊥(pωrf + ω)
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Bunch-by-bunch Feedback

Definition
In bunch-by-bunch feedback approach the actuator signal for a given
bunch depends only on the past motion of that bunch.

Controller

Beam
Kicker structure

Back−endFront−end

SensorBPM Actuator

Bunches are processed sequentially;
Correction kicks are applied one or more turns later;
Diagonal feedback — computationally efficient;
Extremely popular in storage rings — why?
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MIMO Model of Bunch-by-bunch Feedback

Feedback

Beam dynamics

H(ω)

H(ω)

H(ω)

. . .

y0

y1

yN−1

...

u0

u1

uN−1

... G(ω)

N bunch positions and feedback kicks;
Diagonal feedback matrix H(ω)I;
Invariant under coordinate transformations.
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MIMO Model of Bunch-by-bunch Feedback

Feedback

Beam dynamics

H(ω)

H(ω)

H(ω)

. . .

ŷ0

ŷ1

ŷN−1

...

û0

û1

ûN−1

... . . .

Ĝ1(ω)

Ĝ0(ω)

ĜN−1(ω)

Coordinate transformation to eigenmode basis;
N feedback loops - one per mode;
Identical feedback applied to each mode.
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iGp12 Highlights

A 500+ MHz processing
channel.
Finite Impulse Response (FIR)
bunch-by-bunch filtering for
feedback.
Control and diagnostics via
EPICS soft IOC on Linux.
External triggers, fiducial
synchronization, low-speed
ADCs/DACs, general-purpose
digital I/O.
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Front/Back-end Unit

3 front-end channels.
1–1.5 GHz front-end detection
frequency.
2-cycle comb generator.
1–1.5 GHz back-end
frequency.
Integrated control via iGp:

I LO phase shifters;
I Attenuators;
I Temperature measurement

and stabilization.
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Front/Back-end Block Diagram

ΣΣ

iGp GPIODigital control
interface

Two cycle comb filter MixerVariable
attenuator

amplifier
To the power

To the ADC

Low-pass filterAmplifier

Phase shifter 3× frf

2× frf

Bandpass filterAmplifierVariable attenuator

Back-end section

Mixer

×

×

frequency multiplier
Step recovery diode

3× multiplier

2× multiplier

Step recovery diode
frequency multiplier

From the DAC

frf

hybrid
From BPM

Front-end section

Front-end channel (×3)
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iGp12 Specifications

Design goals:
I Reliability;
I Maintainability;
I Ease of use;
I Diagnostics.

FPGA based processing:
I Flexible;
I Field upgradable.

Specifications
Bunch spacing ≥ 1.9 ns

Harmonic number 32–5120
ADC resolution 12 bits
DAC resolution 12 bits

ADC bandwidth 1.35 GHz
Feedback filter 32-tap FIR
Downsampling 1-256
DAQ memory 12 MS

Triggers 2
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The Plan

! TFB in Y;
! Bunch cleaning;
! Tune measurement;
! TFB in X;

! Covered during dual plane operation.

! Measurement of growth and damping times;
! Investigate BXDS ID beam loss problem;
! Feedback in both X and Y with one processor.
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Single Bunch

Cleaning approach:
I Maintain feedback for bunches we want to keep;
I Turn off feedback for bunches to be cleaned;
I Apply swept frequency sinewave excitation to the

bunches to be cleaned.

Feedback action helps by rejecting excitation
coupling;
Power amplifiers currently in use are really marginal
due to extreme phase non-linearity above 200 MHz;
Fairly straightforward to achieve pure single bunch;
Plots shows purity around 6× 104, had better
cleaning later on.
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Middle of the Bunch Train

Much more difficult to create a
setup that can clean arbitrary
patterns in the middle of the
bunch train;
Desired pattern: gap of 1, 1
bunch, gap of 2, 2 bunches,
gap of 3, 3 bunches, gap of 4,
4 bunches, gap of 1;
Achieved after some trial and
error.
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Grow/damp Measurements

280 bunches filled (short gap);
Grow/damp at 249 mA, 10 ms
growth time;
Dominated by low-frequency
modes;
Mode -1 is typically resistive
wall, -2 and -3 are due to ions;
Exponential growth of -1,
linear/saturating growth of
ion-drive modes;
What if we let the oscillations
grow a bit longer?
10 ms;
20 ms.
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Grow/damp Measurements
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Power Amplifiers Limiting Feedback Gain

Had a relatively low limit on feedback
gain, leading to imperfect control of
ion-driven motion;
In 280 bunch fill assumed beam-ion
interaction limited the gain;
Limit persisted in 265 bunch pattern;
At increased gain feedback drives
modes 120–165 unstable;
Used iGp12 shaper FIR to roll off
feedback gain, allowing 12 decibel
gain increase;
Damping rate is 40 times faster than
growth rate!

(Dimtel) BxB feedback and diagnostics in CLS 2018-02-07 24 / 39



Power Amplifiers Limiting Feedback Gain

Had a relatively low limit on feedback
gain, leading to imperfect control of
ion-driven motion;
In 280 bunch fill assumed beam-ion
interaction limited the gain;
Limit persisted in 265 bunch pattern;
At increased gain feedback drives
modes 120–165 unstable;
Used iGp12 shaper FIR to roll off
feedback gain, allowing 12 decibel
gain increase;
Damping rate is 40 times faster than
growth rate!

(Dimtel) BxB feedback and diagnostics in CLS 2018-02-07 24 / 39



Power Amplifiers Limiting Feedback Gain

Had a relatively low limit on feedback
gain, leading to imperfect control of
ion-driven motion;
In 280 bunch fill assumed beam-ion
interaction limited the gain;
Limit persisted in 265 bunch pattern;
At increased gain feedback drives
modes 120–165 unstable;
Used iGp12 shaper FIR to roll off
feedback gain, allowing 12 decibel
gain increase;
Damping rate is 40 times faster than
growth rate!

(Dimtel) BxB feedback and diagnostics in CLS 2018-02-07 24 / 39



Power Amplifiers Limiting Feedback Gain

Had a relatively low limit on feedback
gain, leading to imperfect control of
ion-driven motion;
In 280 bunch fill assumed beam-ion
interaction limited the gain;
Limit persisted in 265 bunch pattern;
At increased gain feedback drives
modes 120–165 unstable;
Used iGp12 shaper FIR to roll off
feedback gain, allowing 12 decibel
gain increase;
Damping rate is 40 times faster than
growth rate!

(Dimtel) BxB feedback and diagnostics in CLS 2018-02-07 24 / 39



Power Amplifiers Limiting Feedback Gain

Had a relatively low limit on feedback
gain, leading to imperfect control of
ion-driven motion;
In 280 bunch fill assumed beam-ion
interaction limited the gain;
Limit persisted in 265 bunch pattern;
At increased gain feedback drives
modes 120–165 unstable;
Used iGp12 shaper FIR to roll off
feedback gain, allowing 12 decibel
gain increase;
Damping rate is 40 times faster than
growth rate!

(Dimtel) BxB feedback and diagnostics in CLS 2018-02-07 24 / 39



Power Amplifiers Limiting Feedback Gain

Had a relatively low limit on feedback
gain, leading to imperfect control of
ion-driven motion;
In 280 bunch fill assumed beam-ion
interaction limited the gain;
Limit persisted in 265 bunch pattern;
At increased gain feedback drives
modes 120–165 unstable;
Used iGp12 shaper FIR to roll off
feedback gain, allowing 12 decibel
gain increase;
Damping rate is 40 times faster than
growth rate!

(Dimtel) BxB feedback and diagnostics in CLS 2018-02-07 24 / 39



Outline

1 Introduction
Coupled-bunch Instabilities
Feedback Control

2 Hardware Overview

3 CLS Demo Results
Bunch Cleaning
Multibunch Measurements
Tune Measurement
Beam Loss at Low BXDS Gaps

4 Additional Measurement Examples

(Dimtel) BxB feedback and diagnostics in CLS 2018-02-07 25 / 39



Spectral Notch Tune Monitoring
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In closed loop operation,
feedback signals show a notch
at the betatron frequency;
Beam response is resonant at
the tune frequency;
Attenuation of detection noise
by the feedback is proportional
to the loop gain;
Transfer gain from noise to the
feedback input is 1

1+L(ω)

Maximum attenuation at the
resonance, thus a notch.
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Tune Notch at the CLS

Vertical feedback at 235 mA;
A marker automatically tracks
the minimum;
Readout at 2 Hz in both
frequency and fractional tune
units;
Notch can be washed out by
external excitation;
Can use external trigger to
avoid known excitation source,
e.g. injection.
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Single Bunch Phase Tracking
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Phase accumulator

Beam excitation

Drive frequency

Drive amplitude
DDS-based sinusoidal drive generator

Drive frequency modulation
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DDC+CIC
Beam response

A single bunch is excited with a sinusoidal excitation at low
amplitude (20–40 µm);
Response is detected relative to the excitation to determine the
phase shift
In closed loop, phase tracker adjusts the excitation frequency to
maintain the correct phase shift value;
Adjustable integration time, tracking range, loop gain.
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Fast Phase Tracking
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Decimation factor in phase
tracker controls tracking
bandwidth;
2000 turns decimaton, 877 Hz
feedback rate;
Roughly 80 Hz closed loop
tracking bandwidth;
Tune variation in CLS is fairly
slow, no ripple seen at
10–100 Hz range typical for
other machines;
Lower amplitudes with
significant variation in open
loop.
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Setup
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Horizontal phase 70.0 deg, slope −2.5 deg/kHz; Vertical phase −105.8 deg, slope −1.7 deg/kHz

Configured for feedback in both X and
Y;
Post-mortem acquisition with RF trip
trigger;
24 ms before the trigger, 1.2 ms after.
Captured one abort at 120 mA;
No bunch-by-bunch feedback.
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Loss Event
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BXDS loss: bunch 1

Bunch 1 versus time;
All bunches;
Vertical plane;
Horizontal plane;
Longitudinal.
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All Mode Scan: Technique
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Mode 1

Mode −2

Mode −1

Performed at 15.4 mA (under
the threshold of instability);
Each mode is excited to a
small amplitude under
feedback control;
In a transient measurement
excitation and feedback are
turned off;
Capturing 21 ms of beam
motion twice a second,
16.5 minutes to scan all
modes;
27 GiB data set.
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All Mode Scan: Results
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Upper sideband

Lower sideband

Automated processing extracts
growth or damping rates;
Clear resistive wall signature;
A band of higher order modes
around mode −365
(129 + N × 352 MHz);
A smaller HOM band around
−298 (105 + N × 352 MHz);
Radiation damping rate
118 s−1 (8.5 ms damping
time).
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Single Bunch Transfer Function
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Turn off feedback for bunch 40;
Apply swept sinusoidal
excitation;
Measure beam transfer
function;
A simple-minded fit of a
resonant response;
Fit a linear combination of 3
resonances;
5 resonances;
7 resonances;
9 resonances;
11 resonances.
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Turn off feedback for bunch 40;
Apply swept sinusoidal
excitation;
Measure beam transfer
function;
A simple-minded fit of a
resonant response;
Fit a linear combination of 3
resonances;
5 resonances;
7 resonances;
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Apply swept sinusoidal
excitation;
Measure beam transfer
function;
A simple-minded fit of a
resonant response;
Fit a linear combination of 3
resonances;
5 resonances;
7 resonances;
9 resonances;
11 resonances.
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Single Bunch Phase Tracking

CORDIC

Aφ → IQ
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φ

sin
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Integrator and
range limiter
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CORDIC

IQ → Aφ

A

φ

Beam

Full scale

Phase accumulator

Beam excitation

Drive frequency

Drive amplitude
DDS-based sinusoidal drive generator

Drive frequency modulation

Phase shift setpoint

I

Q

sincos

DDC+CIC
Beam response

A single bunch is excited with a sinusoidal excitation at low
amplitude (20–40 µm);
Response is detected relative to the excitation to determine the
phase shift
In closed loop, phase tracker adjusts the excitation frequency to
maintain the correct phase shift value;
Adjustable integration time, tracking range, loop gain.
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Fast Phase Tracking
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Fast tune tracking (200 turns decimation), 4096 turn FFT
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Decimation factor in phase
tracker controls tracking
bandwidth;
200 turns decimaton, 1.77 kHz
measurement bandwidth;
180 Hz closed loop tracking
bandwidth;
Use time-domain
downconversion to better
resolve tune modulation;
Spectrum shows lines at 10
and 50 hertz.
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Fast Phase Tracking
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Tracking frequency vs. time

Decimation factor in phase
tracker controls tracking
bandwidth;
200 turns decimaton, 1.77 kHz
measurement bandwidth;
180 Hz closed loop tracking
bandwidth;
Use time-domain
downconversion to better
resolve tune modulation;
Spectrum shows lines at 10
and 50 hertz.
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Fast Phase Tracking

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

Frequency (Hz)

M
a

g
n

it
u

d
e

 (
a

rb
. 

u
n

it
s
)

FFT of tune frequency signal
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bandwidth;
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measurement bandwidth;
180 Hz closed loop tracking
bandwidth;
Use time-domain
downconversion to better
resolve tune modulation;
Spectrum shows lines at 10
and 50 hertz.
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Summary

Successfully operated Dimtel bunch-by-bunch system in the CLS;
Many diagnostic features have been demonstrated;
With some balancing and optimization better performance is
feasible;
I’d like to thank everyone who helped to make this a successful
test!
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