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Measure some property of
the plant with a sensor.
Plant behavior (state) can
be affected by an actuator.
Feedback loop is
completed by a controller.
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Closed-loop Feedback: Structure and Example
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y

Take a household heating
system as an example.

Our plant is the house.
Actuator - furnace.
Sensor - thermistor.
Controller - thermostat.

Loop signals
Output y - temperature;
Input u - heated air from
the furnace;
Reference r -
temperature setpoint.
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Mechanical system: mass
on a spring with a damper.
Described by
Mẍ + γẋ + Kx = F .
Differential equation is a
time-domain description.
Frequency domain -
Laplace transform.
Frequency response
evaluated at s = iω.
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Mẍ + γẋ + Kx = F .
Differential equation is a
time-domain description.
Frequency domain -
Laplace transform.
Frequency response
evaluated at s = iω.



Feedback Diagnostics Summary

Dynamic System Descriptions and Models

1

−Mω2+γiω+K
F x

Mechanical system: mass
on a spring with a damper.
Described by
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Consider a single bunch in a lepton storage ring.
Centroid motion has damped harmonic oscillator
dynamics.
Multiple bunches couple via wakefields (impedances in the
frequency domain).
At high beam currents this coupling leads to instabilities.
In modern accelerators active feedback is used to
suppress such instabilities.
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Bunch-by-bunch Feedback

Definition
In bunch-by-bunch feedback approach the actuator signal for a
given bunch depends only on the past motion of that bunch.

Controller

Beam Kicker structure

Back−endFront−end

SensorBPM Actuator

Bunches are processed sequentially.
Correction kicks are applied one or more turns later.
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Coupled-bunch Instabilities: Eigenmodes and
Eigenvalues

If we consider bunches as coupled harmonic oscillators, a
system of N bunches has N eigenmodes.
Without the wakefields these modes have identical
eigenvalues determined by the tune and the radiation
damping.
Impedances shift the modal eigenvalues in both real part
(damping rate) and imaginary part (oscillation frequency).
Modeling all eigenmodes is computationally intensive.
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MIMO model of the bunch-by-bunch feedback

Beam dynamics

Feedback

...
G(s)

...
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. . .
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Beam is a multi-input
multi-output (MIMO)
system.
For N bunches there are N
inputs and outputs.

Individual bunch kicks
are the inputs.
Bunch positions are the
outputs.

Sequential processing,
parallel analysis.
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Detailed Scalar Feedback Model

Processing & cable delay Zero−order hold Feedback filter

Beam
SamplingComplex gain
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Grow/Damp Measurements

Unstable systems are difficult to
characterize.
Transient measurements - open
the loop for a short time to allow
the unstable modes to grow.
Record coordinates of all
bunches.
Longitudinal grow/damp in
BEPC-II - HOMs in various
vacuum structures.
Vertical grow/damp in CESR-TA
- electron cloud.
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Estimating Eigenvalues
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We post-process the data
to estimate phase-space
trajectories of the even-fill
eigenmodes.
Longitudinal mode 233 at
the ALS is shown.
Complex exponentials are
fitted to the data to
estimate the eigenvalues.
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Estimating Eigenvalues
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Triggered Data Acquisition
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Feedback off Data acquisition can be
externally triggered;
Typically used to observe
the motion of the injected
bunch turn-by-turn;
Longitudinal oscillations in
the ATF (KEK) after
injection;
... and with longitudinal
feedback on.
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A Different Look at the Same Data
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Acquire PEP-II LER
vertical motion data on
injection trigger;
Plot bunch-by-bunch RMS,
align on the bunch with
max. RMS;
Plot turn-by-turn RMS;
Use data before injection
to compute steady-state
detector offsets;
Plot orbit perturbation on
the first turn after injection.
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Injection Tuning

Orbit perturbation shows
relative and absolute kicker
timing error;
Adjust the timing;
Next we adjust kicker 2
amplitude;
EPICS waveform display
shows the injection quality
in real time.
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PEP-II LER Injection Movie



Feedback Diagnostics Summary

Outline

1 Feedback
Feedback basics
Coupled-bunch instabilities and feedback
Beam and feedback models

2 Diagnostics
Grow/Damp Measurements
Injection Quality Diagnostics
Tune Measurement



Feedback Diagnostics Summary

Parasitic Tune Measurement

In 2005–2008 DAΦNE
upgraded to Dimtel, Inc.
bunch-by-bunch feedback
systems with integrated
diagnostics;
This upgrade created new
measurement possibilities;
Key to these
measurements is a curious
notch in the beam
spectrum.
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Why Is There a Notch?

∑ Error

Transverse position

DisturbancesDetection noise

Feedback Beam

Beam response is resonant
at the tune frequency;
Attenuation of detection
noise by the feedback is
proportional to the loop
gain;
Transfer gain from noise to
the feedback input is 1

1+L(ω)

Maximum attenuation at the
resonance, thus a notch.
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Bunch-by-bunch Tunes
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DAFNE e+ bunch 30 horizontal spectrum, 600 mA, 4−apr−2008

 

 

Data

Start from computing bunch
spectrum;
Fit model beam/feedback
response to the spectrum;
Repeat for all filled bunches;
Convert to fractional tune.
Completely parasitic
measurement of bunch-by-bunch
tunes.
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Data
Fit

Start from computing bunch
spectrum;
Fit model beam/feedback
response to the spectrum;
Repeat for all filled bunches;
Convert to fractional tune.
Completely parasitic
measurement of bunch-by-bunch
tunes.
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Bunch-by-bunch Tunes
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DAFNE e+ bunch−by−bunch horizontal frequency, 600 mA, 4−apr−2008 Start from computing bunch
spectrum;
Fit model beam/feedback
response to the spectrum;
Repeat for all filled bunches;
Convert to fractional tune.
Completely parasitic
measurement of bunch-by-bunch
tunes.
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Horizontal vs. Vertical
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Two measurements at 420 mA;
Horizontal tune spread is
6.5× 10−3;
Vertical tune spread is
2.8× 10−3.
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Horizontal vs. Vertical
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Sophisticated beam and feedback modeling tools are
critical for successful and reliable instability control.
Bunch-by-bunch data acquisition yields a lot of diagnostic
information.
Some diagnostics are only possible within the feedback
loop.
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