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Coupled-bunch Instabilities in FCC-ee

Focusing on Z — the highest beam current case;
Transverse plane:

Very fast resistive wall growth times (7 turns);
Low vertical emittance, need excellent control of the
residual dipole motion.

Longitudinal plane:
Due to beam loading, cavity fundamental impedance will
excite low-frequency longitudinal modes;
Low-level RF feedback is needed to bring the effective
impedance down to the level that bunch-by-bunch feedback
can handle;
Since longitudinal feedback is needed in any case, this may
simplify the HOM damping requirements.
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Bunch-by-bunch Feedback

Definition
In bunch-by-bunch feedback approach the actuator signal for a
given bunch depends only on the past motion of that bunch.

Controller

Beam
Kicker structure

Back−endFront−end

SensorBPM Actuator

Bunches are processed sequentially;
Correction kicks are applied one turn later;
Diagonal feedback — computationally efficient;
Widely used in storage rings, well understood.
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Conventional Topology — Applicability

Conventional topology:
Single pickup;
Single kicker;
Purely bunch-by-bunch processing.

Limits, transverse plane:
Good performance for moderate growth times (20+ turns);
Fundamental limits come into play for growth times at 3–5
turns;
Sensitivity and residual motion;
Beam-ion interactions driving residual motion.

Limits, longitudinal plane:
Need to generate a 90◦ shift between pickup and kicker,
sizable fraction of the synchrotron period;
Damping rates scale with synchrotron frequency;
Minimum controllable growth time around Ts;
Synchrotron tune spread reduces achievable damping.
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Conventional Topology — Applicability

Fast growth rate corresponds to wide bandwidth around
the synchrotron or betatron tune.
Beam responds to feedback action farther and farther
away from the tune.
Delay comes from:

One turn between sensing and kicking;
Longitudinal – generating a 90◦ phase shift;
Transverse — typically takes 3–4 turns to generate the
proper phase shift;

Thoughtful selection of pickup and kicker positions can
reduce the delay to just one turn.
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Longitudinal Damping at ANKA
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     f) Growth Rates (post−brkpt)

ANKA:mar0516/143812:  Io= 138.0587mA,  Dsamp= 2,  ShifGain= 4, Nbun= 184,
At Fs: G1= 119.0572,  G2= 0,  Ph1= −76.5927,  Ph2= 0,  Brkpt= 240,  Calib= 34.252.

Measured while cavity
tuning walks an HOM onto
a synchrotron sideband;
Growth time is 2.3Ts,
damping time is Ts;
Filter is 2/3 of a
synchrotron period,
processing every other
turn;
Close to maximum
achievable damping.
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Longitudinal Damping at ANKA
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Measured while cavity
tuning walks an HOM onto
a synchrotron sideband;
Growth time is 2.3Ts,
damping time is Ts;
Filter is 2/3 of a
synchrotron period,
processing every other
turn;
Close to maximum
achievable damping.
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Longitudinal Damping at ANKA
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Longitudinal Damping at ANKA
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Sensitivity and Noise

∑ Error

Transverse position (y)

Disturbances

Feedback Beam

Detection noise (vn)

Complementary sensitivity function
T (ω) = L(ω)/(1 + L(ω)) is the transfer function between
noise vn and beam motion y ;
Assuming flat spectral density for vn can calculate
amplification or attenuation of sensing noise;
Qualitatively, faster damping corresponds to wider
bandwidth→ higher noise sensitivity;
Rule of thumb: closed loop damping rate should be of the
same magnitude as open-loop growth rate.



Introduction Fundamental Limits FCC-ee Considerations Extra Slides

Averaged Bunch Spectra vs. Feedback Gain 1
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Monitor channel, loop gain 1

Two independent channels
monitoring vertical motion, one
in the feedback loop, one out
of the loop;
Roughly similar sensitivities,
250 mA in 1000 bunches;
Significant residual motion line
due to ion excitation;
Double the feedback gain;
Again;
Again;
Once more;
Wider bandwidth.

1Measurements courtesy of Weixing Cheng of NSLS-II.
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Averaged Bunch Spectra vs. Feedback Gain 1
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Beam Size vs. Feedback Gain 2
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Vertical beam size measured by pinhole camera

Vertical beam size from
pinhole camera;
A superposition of true
beam size and residual
dipole motion;
Vertical emittance,
calculated from pinhole
camera data;
Lifetime is correlated with
beam size measurements,
suggesting vertical size
blow-up as well.

2Measurements courtesy of Weixing Cheng of NSLS-II.
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Vertical Setup
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4 taps, growth time 7.0 turns, damping time 3.7 turns

Root locus —
growth/damping rate on
the real axis, tune on the
imaginary;
Configured for maximum
damping;
Damping vs. gain;
Complementary sensitivity
function describes the
closed-loop response to
measurement noise.
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Maximum eigenvalue shift 0.42 1/turns

Root locus —
growth/damping rate on
the real axis, tune on the
imaginary;
Configured for maximum
damping;
Damping vs. gain;
Complementary sensitivity
function describes the
closed-loop response to
measurement noise.
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Vertical Setup
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Root locus —
growth/damping rate on
the real axis, tune on the
imaginary;
Configured for maximum
damping;
Damping vs. gain;
Complementary sensitivity
function describes the
closed-loop response to
measurement noise.
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Damping and Tune Variation
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Maximum eigenvalue shift 0.42 1/turns Well configured for
the nominal tune;
What about tune
shifts?
At shifted betatron
tunes the feedback
is no longer optimal
— less damping;
Allowable tune shift
range vs. growth
time.



Introduction Fundamental Limits FCC-ee Considerations Extra Slides

Damping and Tune Variation
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Damping and Tune Variation
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Feedback damping (maximum growth rate) vs. tune shift Well configured for
the nominal tune;
What about tune
shifts?
At shifted betatron
tunes the feedback
is no longer optimal
— less damping;
Allowable tune shift
range vs. growth
time.
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Damping and Tune Variation
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the nominal tune;
What about tune
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At shifted betatron
tunes the feedback
is no longer optimal
— less damping;
Allowable tune shift
range vs. growth
time.
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Examples of Front-End Sensitivities Achieved

Vertical Plane

Machine Attenuation At nominal current
SPEAR3 0 dB 0.96 counts/µm
MAX IV 3 GeV 0 dB 2.8 counts/µm
ASLS 2 dB 0.83 counts/µm
NSLS-IIa 0 dB 0.75 counts/µm

aOlder front-end design with lower sensitivity

Systems optimized for low noise and bunch-to-bunch
isolation at 2 ns bunch spacing;
Input sensitivities around 1–3 counts/µm, steady-state
RMS of 2 counts.
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Feedback Sensitivity at the FCC-ee

Integrated sensitivity function around 0 dB;
Front-end at 2 counts/µm, 2 counts noise floor — 1 µm
residual motion;
Pickup at βy = 100 m gives σy = 10 µm.
Residual motion is at 10% of the beam size, too high;
Sensitivities above are for 2 ns bunch spacing;
Bandwidth reduction for 17.5 ns spacing — a factor of 3
improvement;
Going to βy = 1 km at the pickup provides another factor of
3;
Residual motion at 1% level — what’s the effect on
luminosity?
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Transverse Perturbations

Original goal for bunch-by-bunch feedback — suppression
of instabilities;
In most electron and positron machines, there are no
disturbance sources with frequencies high enough to
excite betatron motion;

Ion and electron cloud driven instabilities are different —
these generate instability growth as well as drive the beam
at betatron frequencies.

FCC-ee circumference places betatron tunes very low in
the spectrum (660 and 2340 Hz lowest vertical lines);
Mechanical and electrical pertubations can be problematic;
Fast orbit feedback overlap?
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Instability and Orbit Feedback Overlap
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Beam transfer function

Orbit feedback

Bunch−by−bunch feedback

APS, 1104 m;
Good separation
between fast orbit
feedback and
coupled-bunch
instability feedback;
A different story in the
FCC-ee;
Orbit feedback and
betatron dynamics;
High-end disturbance
amplification, nowhere
to hide3.

3
S. Gayadeen et al, in 2017 IPAC proceedings, pp. 189–191, TUPIK113
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Summary

Control of coupled-bunch instabilities in FCC-ee is
challenging;
Fast transverse growth rates can be stabilized using the
conventional topology;
Relatively clear path to residual motion at 1% level;
Beam-beam tune shift can worsen the transverse stability;

Tune spread (intra- and inter-bunch) also produces Landau
damping;
Needs study!

Beam-ion interaction can lead to emittance blowup;
Low frequency overlap with orbit feedback is worrisome.
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Root Locii in Complex Plane: Close Zoom

Root locus on the complex
plane:

Starts at the open-loop
pole (×), ends at the
highest gain setting (o);
Real part corresponds to
growth (positive, right half
plane) or damping
(negative, left half plane)
rate;
Imaginary part is the
frequency.

Zoomed in around the
dominant pole, all filters look
the same.
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Root Locii in Complex Plane: Wider View

Zooming out we see
additional poles;
These are due to the
additional delay of the
feedback controller;
Added poles account for
increasing noise sensitivity.
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Sensitivity vs. Feedback Gain
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300 turns growth time,
fractional tune of 0.2, 5-turn
feedback filter;
No excitation, purely flat
noise floor;
Minimum integrated
sensitivity at τol = τcl;
Highly peaked T (ω) at low
gains, very wide at high
gains.
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