Feedback Scenarios

D. Teytelman

Dimtel, Inc., San Jose, CA, USA

FCC Week, Brussels, June 24-28, 2019

FCC-ee Considerations

Outline

- 2 Fundamental Limits
 - Damping and Delay
 - Residual Motion
- FCC-ee Considerations
 - Transverse Damping
 - Sensitivity
 - Disturbance Sources

Coupled-bunch Instabilities in FCC-ee

- Focusing on Z the highest beam current case;
- Transverse plane:
 - Very fast resistive wall growth times (7 turns);
 - Low vertical emittance, need excellent control of the residual dipole motion.
- Longitudinal plane:
 - Due to beam loading, cavity fundamental impedance will excite low-frequency longitudinal modes;
 - Low-level RF feedback is needed to bring the effective impedance down to the level that bunch-by-bunch feedback can handle;
 - Since longitudinal feedback is needed in any case, this may simplify the HOM damping requirements.

Coupled-bunch Instabilities in FCC-ee

- Focusing on Z the highest beam current case;
- Transverse plane:
 - Very fast resistive wall growth times (7 turns);
 - Low vertical emittance, need excellent control of the residual dipole motion.
- Longitudinal plane:
 - Due to beam loading, cavity fundamental impedance will excite low-frequency longitudinal modes;
 - Low-level RF feedback is needed to bring the effective impedance down to the level that bunch-by-bunch feedback can handle;
 - Since longitudinal feedback is needed in any case, this may simplify the HOM damping requirements.

FCC-ee Considerations

Extra Slides

Bunch-by-bunch Feedback

Definition

In bunch-by-bunch feedback approach the actuator signal for a given bunch depends only on the past motion of that bunch.

- Bunches are processed sequentially;
- Correction kicks are applied one turn later;
- Diagonal feedback computationally efficient;
- Widely used in storage rings, well understood.

▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶

Conventional Topology — Applicability

- Conventional topology:
 - Single pickup;
 - Single kicker;
 - Purely bunch-by-bunch processing.
- Limits, transverse plane:
 - Good performance for moderate growth times (20+ turns);
 - Fundamental limits come into play for growth times at 3–5 turns;
 - Sensitivity and residual motion;
 - Beam-ion interactions driving residual motion.
- Limits, longitudinal plane:
 - Need to generate a 90° shift between pickup and kicker, sizable fraction of the synchrotron period;
 - Damping rates scale with synchrotron frequency;
 - Minimum controllable growth time around T_s ;
 - Synchrotron tune spread reduces achievable damping.

・ロット (雪) ・ (日) ・ (日)

Conventional Topology — Applicability

- Conventional topology:
 - Single pickup;
 - Single kicker;
 - Purely bunch-by-bunch processing.
- Limits, transverse plane:
 - Good performance for moderate growth times (20+ turns);
 - Fundamental limits come into play for growth times at 3–5 turns;
 - Sensitivity and residual motion;
 - Beam-ion interactions driving residual motion.
- Limits, longitudinal plane:
 - Need to generate a 90° shift between pickup and kicker, sizable fraction of the synchrotron period;
 - Damping rates scale with synchrotron frequency;
 - Minimum controllable growth time around T_s ;
 - Synchrotron tune spread reduces achievable damping.

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

Conventional Topology — Applicability

- Conventional topology:
 - Single pickup;
 - Single kicker;
 - Purely bunch-by-bunch processing.
- Limits, transverse plane:
 - Good performance for moderate growth times (20+ turns);
 - Fundamental limits come into play for growth times at 3–5 turns;
 - Sensitivity and residual motion;
 - Beam-ion interactions driving residual motion.
- Limits, longitudinal plane:
 - Need to generate a 90° shift between pickup and kicker, sizable fraction of the synchrotron period;
 - Damping rates scale with synchrotron frequency;
 - Minimum controllable growth time around *T_s*;
 - Synchrotron tune spread reduces achievable damping.

・ロット (雪) ・ (日) ・ (日)

FCC-ee Considerations

Outline

Introduction

- Fundamental Limits
 Damping and Delay
 Residual Motion
- FCC-ee Considerations
 Transverse Damping
 - Sensitivity
 - Disturbance Sources

FCC-ee Considerations

Extra Slides

Conventional Topology — Applicability

- Fast growth rate corresponds to wide bandwidth around the synchrotron or betatron tune.
- Beam responds to feedback action farther and farther away from the tune.
- Delay comes from:
 - One turn between sensing and kicking;
 - Longitudinal generating a 90° phase shift;
 - Transverse typically takes 3–4 turns to generate the proper phase shift;
 - Thoughtful selection of pickup and kicker positions can reduce the delay to just one turn.

FCC-ee Considerations

Extra Slides

Conventional Topology — Applicability

- Fast growth rate corresponds to wide bandwidth around the synchrotron or betatron tune.
- Beam responds to feedback action farther and farther away from the tune.
- Delay comes from:
 - One turn between sensing and kicking;
 - Longitudinal generating a 90° phase shift;
 - Transverse typically takes 3–4 turns to generate the proper phase shift;
 - Thoughtful selection of pickup and kicker positions can reduce the delay to just one turn.

FCC-ee Considerations

Extra Slides

Conventional Topology — Applicability

- Fast growth rate corresponds to wide bandwidth around the synchrotron or betatron tune.
- Beam responds to feedback action farther and farther away from the tune.
- Delay comes from:
 - One turn between sensing and kicking;
 - Longitudinal generating a 90° phase shift;
 - Transverse typically takes 3–4 turns to generate the proper phase shift;
 - Thoughtful selection of pickup and kicker positions can reduce the delay to just one turn.

・ ロ ト ・ 同 ト ・ ヨ ト ・ ヨ ト

FCC-ee Considerations

Extra Slides

Conventional Topology — Applicability

- Fast growth rate corresponds to wide bandwidth around the synchrotron or betatron tune.
- Beam responds to feedback action farther and farther away from the tune.
- Delay comes from:
 - One turn between sensing and kicking;
 - Longitudinal generating a 90° phase shift;
 - Transverse typically takes 3–4 turns to generate the proper phase shift;
 - Thoughtful selection of pickup and kicker positions can reduce the delay to just one turn.

・ ロ ト ・ 同 ト ・ ヨ ト ・ ヨ ト

FCC-ee Considerations

Extra Slides

Longitudinal Damping at ANKA

- Measured while cavity tuning walks an HOM onto a synchrotron sideband;
- Growth time is 2.3*T_s*, damping time is *T_s*;
- Filter is 2/3 of a synchrotron period, processing every other turn;
- Close to maximum achievable damping.

FCC-ee Considerations

Extra Slides

Longitudinal Damping at ANKA

- Measured while cavity tuning walks an HOM onto a synchrotron sideband;
- Growth time is 2.3*T_s*, damping time is *T_s*;
- Filter is 2/3 of a synchrotron period, processing every other turn;
- Close to maximum achievable damping.

FCC-ee Considerations

Extra Slides

Longitudinal Damping at ANKA

- Measured while cavity tuning walks an HOM onto a synchrotron sideband;
- Growth time is 2.3*T_s*, damping time is *T_s*;
- Filter is 2/3 of a synchrotron period, processing every other turn;
- Close to maximum achievable damping.

FCC-ee Considerations

Extra Slides

Longitudinal Damping at ANKA

- Measured while cavity tuning walks an HOM onto a synchrotron sideband;
- Growth time is 2.3*T_s*, damping time is *T_s*;
- Filter is 2/3 of a synchrotron period, processing every other turn;
- Close to maximum achievable damping.

イロト イ理ト イヨト イヨト

Outline

Introduction

- Fundamental Limits
 Damping and Delay
 - Residual Motion
- 3 FCC-ee Considerations
 - Transverse Damping
 - Sensitivity
 - Disturbance Sources

FCC-ee Considerations

Extra Slides

Sensitivity and Noise

- Complementary sensitivity function $T(\omega) = L(\omega)/(1 + L(\omega))$ is the transfer function between noise v_n and beam motion y;
- Assuming flat spectral density for v_n can calculate amplification or attenuation of sensing noise;
- Qualitatively, faster damping corresponds to wider bandwidth → higher noise sensitivity;
- Rule of thumb: closed loop damping rate should be of the same magnitude as open-loop growth rate.

Extra Slides

Averaged Bunch Spectra vs. Feedback Gain¹

- Two independent channels monitoring vertical motion, one in the feedback loop, one out of the loop;
- Roughly similar sensitivities, 250 mA in 1000 bunches;
- Significant residual motion line due to ion excitation;
- Double the feedback gain;
- Again;
- Again;
- Once more;
- Wider bandwidth.

Extra Slides

Averaged Bunch Spectra vs. Feedback Gain¹

- Two independent channels monitoring vertical motion, one in the feedback loop, one out of the loop;
- Roughly similar sensitivities, 250 mA in 1000 bunches;
- Significant residual motion line due to ion excitation;
- Double the feedback gain;
- Again;
- Again;
- Once more;
- Wider bandwidth.

Extra Slides

Averaged Bunch Spectra vs. Feedback Gain¹

- Two independent channels monitoring vertical motion, one in the feedback loop, one out of the loop;
- Roughly similar sensitivities, 250 mA in 1000 bunches;
- Significant residual motion line due to ion excitation;
- Double the feedback gain;
- Again;
- Again;
- Once more;
- Wider bandwidth.

Extra Slides

Averaged Bunch Spectra vs. Feedback Gain¹

- Two independent channels monitoring vertical motion, one in the feedback loop, one out of the loop;
- Roughly similar sensitivities, 250 mA in 1000 bunches;
- Significant residual motion line due to ion excitation;
- Double the feedback gain;
- Again;
- Again;
- Once more;
- Wider bandwidth.

Extra Slides

Averaged Bunch Spectra vs. Feedback Gain¹

- Two independent channels monitoring vertical motion, one in the feedback loop, one out of the loop;
- Roughly similar sensitivities, 250 mA in 1000 bunches;
- Significant residual motion line due to ion excitation;
- Double the feedback gain;
- Again;
- Again;
- Once more;
- Wider bandwidth.

Extra Slides

Averaged Bunch Spectra vs. Feedback Gain¹

- Two independent channels monitoring vertical motion, one in the feedback loop, one out of the loop;
- Roughly similar sensitivities, 250 mA in 1000 bunches;
- Significant residual motion line due to ion excitation;
- Double the feedback gain;
- Again;
- Again;
- Once more;
- Wider bandwidth.

Extra Slides

Averaged Bunch Spectra vs. Feedback Gain¹

- Two independent channels monitoring vertical motion, one in the feedback loop, one out of the loop;
- Roughly similar sensitivities, 250 mA in 1000 bunches;
- Significant residual motion line due to ion excitation;
- Double the feedback gain;
- Again;
- Again;
- Once more;
- Wider bandwidth.

Extra Slides

Averaged Bunch Spectra vs. Feedback Gain¹

- Two independent channels monitoring vertical motion, one in the feedback loop, one out of the loop;
- Roughly similar sensitivities, 250 mA in 1000 bunches;
- Significant residual motion line due to ion excitation;
- Double the feedback gain;
- Again;
- Again;
- Once more;
- Wider bandwidth.

FCC-ee Considerations

Extra Slides

Beam Size vs. Feedback Gain²

- Vertical beam size from pinhole camera;
- A superposition of true beam size and residual dipole motion;
- Vertical emittance, calculated from pinhole camera data;
- Lifetime is correlated with beam size measurements, suggesting vertical size blow-up as well.

FCC-ee Considerations

Extra Slides

Beam Size vs. Feedback Gain²

- Vertical beam size from pinhole camera;
- A superposition of true beam size and residual dipole motion;
- Vertical emittance, calculated from pinhole camera data;
- Lifetime is correlated with beam size measurements, suggesting vertical size blow-up as well.

FCC-ee Considerations

Extra Slides

Beam Size vs. Feedback Gain²

- Vertical beam size from pinhole camera;
- A superposition of true beam size and residual dipole motion;
- Vertical emittance, calculated from pinhole camera data;
- Lifetime is correlated with beam size measurements, suggesting vertical size blow-up as well.

FCC-ee Considerations

Extra Slides

Beam Size vs. Feedback Gain²

- Vertical beam size from pinhole camera;
- A superposition of true beam size and residual dipole motion;
- Vertical emittance, calculated from pinhole camera data;
- Lifetime is correlated with beam size measurements, suggesting vertical size blow-up as well.

FCC-ee Considerations

(日)

Outline

Introduction

- 2 Fundamental Limits
 - Damping and Delay
 - Residual Motion
- FCC-ee Considerations
 - Transverse Damping
 - Sensitivity
 - Disturbance Sources

4 Extra Slides

Vertical Setup

Fundamental Limits

FCC-ee Considerations

- Root locus growth/damping rate on the real axis, tune on the imaginary;
- Configured for maximum damping;
- Damping vs. gain;
- Complementary sensitivity function describes the closed-loop response to measurement noise.

FCC-ee Considerations

Vertical Setup

- Root locus growth/damping rate on the real axis, tune on the imaginary;
- Configured for maximum damping;
- Damping vs. gain;
- Complementary sensitivity function describes the closed-loop response to measurement noise.

Vertical Setup

Fundamental Limits

1000

Frequency (Hz)

1500

FCC-ee Considerations

Extra Slides

- Root locus growth/damping rate on the real axis, tune on the imaginary;
- Configured for maximum damping;
- Damping vs. gain;
- Complementary sensitivity function describes the closed-loop response to measurement noise.

FCC-ee Considerations

Extra Slides

Damping and Tune Variation

- Well configured for the nominal tune;
- What about tune shifts?
- At shifted betatron tunes the feedback is no longer optimal — less damping;
- Allowable tune shift range vs. growth time.

イロト イ理ト イヨト イヨト
FCC-ee Considerations

Extra Slides

Damping and Tune Variation

- Well configured for the nominal tune;
- What about tune shifts?
- At shifted betatron tunes the feedback is no longer optimal — less damping;
- Allowable tune shift range vs. growth time.

・ロト ・四ト ・ヨト ・ヨト

FCC-ee Considerations

Extra Slides

Damping and Tune Variation

- Well configured for the nominal tune;
- What about tune shifts?
- At shifted betatron tunes the feedback is no longer optimal — less damping;
- Allowable tune shift range vs. growth time.

・ロット (雪) (日) (日)

FCC-ee Considerations

Extra Slides

Damping and Tune Variation

- Well configured for the nominal tune;
- What about tune shifts?
- At shifted betatron tunes the feedback is no longer optimal — less damping;
- Allowable tune shift range vs. growth time.

イロト イ理ト イヨト イヨト

FCC-ee Considerations

Outline

Introduction

- 2 Fundamental Limits
 - Damping and Delay
 - Residual Motion

FCC-ee Considerations

- Transverse Damping
- Sensitivity
- Disturbance Sources

FCC-ee Considerations

Extra Slides

Examples of Front-End Sensitivities Achieved

Vertical Plane

Machine	Attenuation	At nominal current
SPEAR3	0 dB	0.96 counts/µm
MAX IV 3 GeV	0 dB	2.8 counts/µm
ASLS	2 dB	0.83 counts/µm
NSLS-II ^a	0 dB	0.75 counts/µm

^aOlder front-end design with lower sensitivity

- Systems optimized for low noise and bunch-to-bunch isolation at 2 ns bunch spacing;
- Input sensitivities around 1–3 counts/μm, steady-state RMS of 2 counts.

FCC-ee Considerations

Extra Slides

Feedback Sensitivity at the FCC-ee

- Integrated sensitivity function around 0 dB;
- Front-end at 2 counts/ μ m, 2 counts noise floor 1 μ m residual motion;
- Pickup at $\beta_y = 100$ m gives $\sigma_y = 10 \ \mu m$.
- Residual motion is at 10% of the beam size, too high;
- Sensitivities above are for 2 ns bunch spacing;
- Bandwidth reduction for 17.5 ns spacing a factor of 3 improvement;
- Going to $\beta_y = 1$ km at the pickup provides another factor of 3;
- Residual motion at 1% level what's the effect on luminosity?

・ ロ ト ・ 雪 ト ・ 目 ト ・

Feedback Sensitivity at the FCC-ee

- Integrated sensitivity function around 0 dB;
- Front-end at 2 counts/µm, 2 counts noise floor 1 µm residual motion;
- Pickup at $\beta_y = 100$ m gives $\sigma_y = 10 \ \mu m$.
- Residual motion is at 10% of the beam size, too high;
- Sensitivities above are for 2 ns bunch spacing;
- Bandwidth reduction for 17.5 ns spacing a factor of 3 improvement;
- Going to $\beta_y = 1$ km at the pickup provides another factor of 3;
- Residual motion at 1% level what's the effect on luminosity?

・ ロ ト ・ 雪 ト ・ 目 ト ・

Feedback Sensitivity at the FCC-ee

- Integrated sensitivity function around 0 dB;
- Front-end at 2 counts/μm, 2 counts noise floor 1 μm residual motion;
- Pickup at $\beta_y = 100$ m gives $\sigma_y = 10 \ \mu m$.
- Residual motion is at 10% of the beam size, too high;
- Sensitivities above are for 2 ns bunch spacing;
- Bandwidth reduction for 17.5 ns spacing a factor of 3 improvement;
- Going to $\beta_y = 1$ km at the pickup provides another factor of 3;
- Residual motion at 1% level what's the effect on luminosity?

Feedback Sensitivity at the FCC-ee

- Integrated sensitivity function around 0 dB;
- Front-end at 2 counts/μm, 2 counts noise floor 1 μm residual motion;
- Pickup at $\beta_y = 100$ m gives $\sigma_y = 10 \ \mu m$.
- Residual motion is at 10% of the beam size, too high;
- Sensitivities above are for 2 ns bunch spacing;
- Bandwidth reduction for 17.5 ns spacing a factor of 3 improvement;
- Going to $\beta_y = 1$ km at the pickup provides another factor of 3;
- Residual motion at 1% level what's the effect on luminosity?

A B > A B > A B >

Feedback Sensitivity at the FCC-ee

- Integrated sensitivity function around 0 dB;
- Front-end at 2 counts/μm, 2 counts noise floor 1 μm residual motion;
- Pickup at $\beta_y = 100$ m gives $\sigma_y = 10 \ \mu m$.
- Residual motion is at 10% of the beam size, too high;
- Sensitivities above are for 2 ns bunch spacing;
- Bandwidth reduction for 17.5 ns spacing a factor of 3 improvement;
- Going to $\beta_y = 1$ km at the pickup provides another factor of 3;
- Residual motion at 1% level what's the effect on luminosity?

A B > A B > A B >

Feedback Sensitivity at the FCC-ee

- Integrated sensitivity function around 0 dB;
- Front-end at 2 counts/μm, 2 counts noise floor 1 μm residual motion;
- Pickup at $\beta_y = 100$ m gives $\sigma_y = 10 \ \mu m$.
- Residual motion is at 10% of the beam size, too high;
- Sensitivities above are for 2 ns bunch spacing;
- Bandwidth reduction for 17.5 ns spacing a factor of 3 improvement;
- Going to $\beta_y = 1$ km at the pickup provides another factor of 3;
- Residual motion at 1% level what's the effect on luminosity?

A B > A B > A B >

Feedback Sensitivity at the FCC-ee

- Integrated sensitivity function around 0 dB;
- Front-end at 2 counts/μm, 2 counts noise floor 1 μm residual motion;
- Pickup at $\beta_y = 100$ m gives $\sigma_y = 10 \ \mu m$.
- Residual motion is at 10% of the beam size, too high;
- Sensitivities above are for 2 ns bunch spacing;
- Bandwidth reduction for 17.5 ns spacing a factor of 3 improvement;
- Going to $\beta_y = 1$ km at the pickup provides another factor of 3;
- Residual motion at 1% level what's the effect on luminosity?

A D > A D > A D > A D >

Feedback Sensitivity at the FCC-ee

- Integrated sensitivity function around 0 dB;
- Front-end at 2 counts/μm, 2 counts noise floor 1 μm residual motion;
- Pickup at $\beta_y = 100$ m gives $\sigma_y = 10 \ \mu m$.
- Residual motion is at 10% of the beam size, too high;
- Sensitivities above are for 2 ns bunch spacing;
- Bandwidth reduction for 17.5 ns spacing a factor of 3 improvement;
- Going to $\beta_y = 1$ km at the pickup provides another factor of 3;
- Residual motion at 1% level what's the effect on luminosity?

-

A D > A D > A D > A D >

FCC-ee Considerations

Outline

Introduction

- 2 Fundamental Limits
 - Damping and Delay
 - Residual Motion

FCC-ee Considerations

- Transverse DampingSensitivity
- Disturbance Sources

FCC-ee Considerations

・ ロ ト ・ 同 ト ・ ヨ ト ・ ヨ ト

- Original goal for bunch-by-bunch feedback suppression of instabilities;
- In most electron and positron machines, there are no disturbance sources with frequencies high enough to excite betatron motion;
 - Ion and electron cloud driven instabilities are different these generate instability growth as well as drive the beam at betatron frequencies.
- FCC-ee circumference places betatron tunes very low in the spectrum (660 and 2340 Hz lowest vertical lines);
- Mechanical and electrical pertubations can be problematic;
- Fast orbit feedback overlap?

FCC-ee Considerations

・ ロ ト ・ 雪 ト ・ ヨ ト ・ 日 ト

- Original goal for bunch-by-bunch feedback suppression of instabilities;
- In most electron and positron machines, there are no disturbance sources with frequencies high enough to excite betatron motion;
 - Ion and electron cloud driven instabilities are different these generate instability growth as well as drive the beam at betatron frequencies.
- FCC-ee circumference places betatron tunes very low in the spectrum (660 and 2340 Hz lowest vertical lines);
- Mechanical and electrical pertubations can be problematic;
- Fast orbit feedback overlap?

FCC-ee Considerations

Extra Slides

- Original goal for bunch-by-bunch feedback suppression of instabilities;
- In most electron and positron machines, there are no disturbance sources with frequencies high enough to excite betatron motion;
 - Ion and electron cloud driven instabilities are different these generate instability growth as well as drive the beam at betatron frequencies.
- FCC-ee circumference places betatron tunes very low in the spectrum (660 and 2340 Hz lowest vertical lines);
- Mechanical and electrical pertubations can be problematic;
- Fast orbit feedback overlap?

FCC-ee Considerations

Extra Slides

- Original goal for bunch-by-bunch feedback suppression of instabilities;
- In most electron and positron machines, there are no disturbance sources with frequencies high enough to excite betatron motion;
 - Ion and electron cloud driven instabilities are different these generate instability growth as well as drive the beam at betatron frequencies.
- FCC-ee circumference places betatron tunes very low in the spectrum (660 and 2340 Hz lowest vertical lines);
- Mechanical and electrical pertubations can be problematic;
- Fast orbit feedback overlap?

FCC-ee Considerations

Extra Slides

・ロト ・聞 ト ・ 団 ト ・ 団 ト

- Original goal for bunch-by-bunch feedback suppression of instabilities;
- In most electron and positron machines, there are no disturbance sources with frequencies high enough to excite betatron motion;
 - Ion and electron cloud driven instabilities are different these generate instability growth as well as drive the beam at betatron frequencies.
- FCC-ee circumference places betatron tunes very low in the spectrum (660 and 2340 Hz lowest vertical lines);
- Mechanical and electrical pertubations can be problematic;
- Fast orbit feedback overlap?

FCC-ee Considerations

Extra Slides

Instability and Orbit Feedback Overlap

• APS, 1104 m;

- Good separation between fast orbit feedback and coupled-bunch instability feedback;
- A different story in the FCC-ee;
- Orbit feedback and betatron dynamics;
- High-end disturbance amplification, nowhere to hide³.

FCC-ee Considerations

Extra Slides

- APS, 1104 m;
- Good separation between fast orbit feedback and coupled-bunch instability feedback;
- A different story in the FCC-ee;
- Orbit feedback and betatron dynamics;
- High-end disturbance amplification, nowhere to hide³.

FCC-ee Considerations

Extra Slides

- APS, 1104 m;
- Good separation between fast orbit feedback and coupled-bunch instability feedback;
- A different story in the FCC-ee;
- Orbit feedback and betatron dynamics;
- High-end disturbance amplification, nowhere to hide³.

FCC-ee Considerations

Extra Slides

- APS, 1104 m;
- Good separation between fast orbit feedback and coupled-bunch instability feedback;
- A different story in the FCC-ee;
- Orbit feedback and betatron dynamics;
- High-end disturbance amplification, nowhere to hide³.

FCC-ee Considerations

Extra Slides

- APS, 1104 m;
- Good separation between fast orbit feedback and coupled-bunch instability feedback;
- A different story in the FCC-ee;
- Orbit feedback and betatron dynamics;
- High-end disturbance amplification, nowhere to hide³.

FCC-ee Considerations

Summary

- Control of coupled-bunch instabilities in FCC-ee is challenging;
- Fast transverse growth rates can be stabilized using the conventional topology;
- Relatively clear path to residual motion at 1% level;
- Beam-beam tune shift can worsen the transverse stability;
 - Tune spread (intra- and inter-bunch) also produces Landau damping;
 - Needs study!
- Beam-ion interaction can lead to emittance blowup;
- Low frequency overlap with orbit feedback is worrisome.

・ロット (雪) (日) (日)

- Control of coupled-bunch instabilities in FCC-ee is challenging;
- Fast transverse growth rates can be stabilized using the conventional topology;
- Relatively clear path to residual motion at 1% level;
- Beam-beam tune shift can worsen the transverse stability;
 - Tune spread (intra- and inter-bunch) also produces Landau damping;
 - Needs study!
- Beam-ion interaction can lead to emittance blowup;
- Low frequency overlap with orbit feedback is worrisome.

- Control of coupled-bunch instabilities in FCC-ee is challenging;
- Fast transverse growth rates can be stabilized using the conventional topology;
- Relatively clear path to residual motion at 1% level;
- Beam-beam tune shift can worsen the transverse stability;
 - Tune spread (intra- and inter-bunch) also produces Landau damping;
 - Needs study!
- Beam-ion interaction can lead to emittance blowup;
- Low frequency overlap with orbit feedback is worrisome.

- Control of coupled-bunch instabilities in FCC-ee is challenging;
- Fast transverse growth rates can be stabilized using the conventional topology;
- Relatively clear path to residual motion at 1% level;
- Beam-beam tune shift can worsen the transverse stability;
 - Tune spread (intra- and inter-bunch) also produces Landau damping;
 - Needs study!
- Beam-ion interaction can lead to emittance blowup;
- Low frequency overlap with orbit feedback is worrisome.

- Control of coupled-bunch instabilities in FCC-ee is challenging;
- Fast transverse growth rates can be stabilized using the conventional topology;
- Relatively clear path to residual motion at 1% level;
- Beam-beam tune shift can worsen the transverse stability;
 - Tune spread (intra- and inter-bunch) also produces Landau damping;
 - Needs study!
- Beam-ion interaction can lead to emittance blowup;
- Low frequency overlap with orbit feedback is worrisome.

- Control of coupled-bunch instabilities in FCC-ee is challenging;
- Fast transverse growth rates can be stabilized using the conventional topology;
- Relatively clear path to residual motion at 1% level;
- Beam-beam tune shift can worsen the transverse stability;
 - Tune spread (intra- and inter-bunch) also produces Landau damping;
 - Needs study!
- Beam-ion interaction can lead to emittance blowup;
- Low frequency overlap with orbit feedback is worrisome.

・ 日マ ・ 雪マ ・ 日マ ・ 日マ

- Control of coupled-bunch instabilities in FCC-ee is challenging;
- Fast transverse growth rates can be stabilized using the conventional topology;
- Relatively clear path to residual motion at 1% level;
- Beam-beam tune shift can worsen the transverse stability;
 - Tune spread (intra- and inter-bunch) also produces Landau damping;
 - Needs study!
- Beam-ion interaction can lead to emittance blowup;
- Low frequency overlap with orbit feedback is worrisome.

FCC-ee Considerations

Acknowledgments

- Thank you for your attention!
- I would also like to thank physicists, engineers, and operators at many machines around the world who directly or indirectly contributed to measurements presented here.
- Special thanks to Weixing Cheng for fruitful discussions and NSLS-II measurements.

FCC-ee Considerations

Extra Slides

Root Locii in Complex Plane: Close Zoom

- Root locus on the complex plane:
 - Starts at the open-loop pole (×), ends at the highest gain setting (o);
 - Real part corresponds to growth (positive, right half plane) or damping (negative, left half plane) rate;
 - Imaginary part is the frequency.
- Zoomed in around the dominant pole, all filters look the same.

・ロット (雪) (日) (日)

FCC-ee Considerations

Extra Slides

Root Locii in Complex Plane: Wider View

- Zooming out we see additional poles;
- These are due to the additional delay of the feedback controller;
- Added poles account for increasing noise sensitivity.

FCC-ee Considerations

Extra Slides

Sensitivity vs. Feedback Gain

- 300 turns growth time, fractional tune of 0.2, 5-turn feedback filter;
- No excitation, purely flat noise floor;
- Minimum integrated sensitivity at τ_{ol} = τ_{cl};
- Highly peaked T(ω) at low gains, very wide at high gains.

(日)

FCC-ee Considerations

Extra Slides

Sensitivity vs. Feedback Gain

- 300 turns growth time, fractional tune of 0.2, 5-turn feedback filter;
- No excitation, purely flat noise floor;
- Minimum integrated sensitivity at τ_{ol} = τ_{cl};
- Highly peaked T(ω) at low gains, very wide at high gains.

(日)

Fundamental Limits

FCC-ee Considerations

Extra Slides

Sensitivity vs. Feedback Gain

- 300 turns growth time, fractional tune of 0.2, 5-turn feedback filter;
- No excitation, purely flat noise floor;
- Minimum integrated sensitivity at τ_{ol} = τ_{cl};
- Highly peaked *T*(ω) at low gains, very wide at high gains.

(日)

