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Closed-loop Feedback: Structure and Example

@ Start with a physical
system (plant).

X _pf Plant e
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@ Start with a physical
system (plant).

@ Measure some property of

—{ actuator » Plant ¥ the plant with a sensor.

@ Plant behavior (state) can
be affected by an actuator.

- sensor R
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Closed-loop Feedback: Structure and Example

@ Start with a physical
system (plant).

@ Measure some property of
] the plant with a sensor.
@ Plant behavior (state) can

be affected by an actuator.

” controller |-= sensor -t o Feedback IOOp iS
completed by a controller.

»| actuator » Plant

clffrizel
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Closed-loop Feedback: Structure and Example

@ Take a household heating
system as an example.

@ Our plant is the house.

»| actuator 7 Y

controller |-= sensor -t
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Closed-loop Feedback: Structure and Example

@ Take a household heating
system as an example.

- @ Our plant is the house.
e Actuator - furnace.
u Yy
= ' 7 e Sensor - thermistor.
Jl

controller
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Closed-loop Feedback: Structure and Example

@ Take a household heating
system as an example.

@ Our plant is the house.
Actuator - furnace.
Sensor - thermistor.
Controller - thermostat.

e U‘H "‘ Yy
2 B

T Ju——
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Closed-loop Feedback: Structure and Example

@ Take a household heating
system as an example.
@ Our plant is the house.
e Actuator - furnace.

il

Y
=~ R 7 e Sensor - thermistor.
g e Controller - thermostat.
L @ Loop signals
r 7 _,-_ . j;@% e Output y - temperature;

' e Input u - heated air from
the furnace;
o Reference r -
temperature setpoint.

el

@



Feedback
ooe

Dynamic System Descriptions and Models

@ Mechanical system: mass
on a spring with a damper.

@ Described by

K
A —— i M5 + 7% + Kx = F.
1l
1]
vy

@ Differential equation is a
time-domain description.

clffrizel
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Dynamic System Descriptions and Models

@ Mechanical system: mass
on a spring with a damper.

@ Described by
Mx +~vx + Kx = F.

@ Differential equation is a
time-domain description.

@ Frequency domain -
Laplace transform.

F 1 T
Ms?2+~vys+K

clffrizel
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Dynamic System Descriptions and Models

@ Mechanical system: mass
on a spring with a damper.

@ Described by
Mx +~vx + Kx = F.
i— m |z, e Differential equation is a
— w w . . . .
K time-domain description.
@ Frequency domain -
Laplace transform.

@ Frequency response
evaluated at s = jw.

clffrizel
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Q Feedback

@ Coupled-bunch instabilities and feedback
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Coupled-bunch Instabilities

@ Consider a single bunch in a lepton storage ring.

@ Centroid motion has damped harmonic oscillator
dynamics.
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Coupled-bunch Instabilities

@ Consider a single bunch in a lepton storage ring.

@ Centroid motion has damped harmonic oscillator
dynamics.

@ Multiple bunches couple via wakefields (impedances in the
frequency domain).

@ At high beam currents this coupling leads to instabilities.

@ In modern accelerators active feedback is used to
suppress such instabilities.

el
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Bunch-by-bunch Feedback

Definition
In bunch-by-bunch feedback approach the actuator signal for a
given bunch depends only on the past motion of that bunch.

»{ Front-end »{ Controller »{ Back-end

@ Bunches are processed sequentially.

@ Correction kicks are applied one or more turns later.
il
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@ Beam and feedback models
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Coupled-bunch Instabilities: Eigenmodes and

Eigenvalues

@ If we consider bunches as coupled harmonic oscillators, a
system of N bunches has N eigenmodes.

@ Without the wakefields these modes have identical
eigenvalues determined by the tune and the radiation
damping.

@ Impedances shift the modal eigenvalues in both real part
(damping rate) and imaginary part (oscillation frequency).

@ Modeling all eigenmodes is computationally intensive.
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MIMO model of the bunch-by-bunch feedback

@ Beam is a multi-input
multi-output (MIMO)

. system.
Beam dynamics |4 @ For N bunches there are N
6 inputs and outputs.
T e e Individual bunch kicks
R ; are the inputs.
: [ : @ Bunch positions are the
firco] outputs.

.......................

@ Sequential processing,
parallel analysis.
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{



Feedback
[e]e] le}

MIMO model of the bunch-by-bunch feedback

@ If feedback is the same for
all bunches, it is invariant
under coordinate

Beam dynamics |22 transformations.

.......................
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MIMO model of the bunch-by-bunch feedback

o If feedback is the same for
all bunches, it is invariant
under coordinate

Beam dynarmics a transformations.
€ @ Bunch-by-bunch feedback
N e Fosbak ! applies the same feedback
=] H(s) to each eigenmode.

.......................
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MIMO model of the bunch-by-bunch feedback

o If feedback is the same for
all bunches, it is invariant
under coordinate

D Beam dynarmics :j transformations.
o @ Bunch-by-bunch feedback

N e Fosbak ! applies the same feedback

=] H(s) to each eigenmode.

[l @ Consequently it is

sufficient to consider the
most unstable eigenmode
for modeling.
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Detailed Scalar Feedback Model

u(t) y(t)

go
§2—2As+w?
Y

) Beam
ge'® | Complex gain Sampling

L%m L e

Processing & cable delay Zero-order hold Feedback filter

el



Diagnostics
@00

Outline

e Diagnostics
@ Grow/Damp Measurements
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Grow/Damp Measurements

a) Osc. Envelopes in Time Domain b) Evolution of Modes.

@ Unstable systems are difficult to
characterize.
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Grow/Damp Measurements

a) Osc. Envelopes in Time Domain b) Evoluton of  Modes

@ Unstable systems are difficult to
e e characterize.
e e 0 i @ Transient measurements - open
poo e B the loop for a short time to allow
- - the unstable modes to grow.

- @ Record coordinates of all
2043 56 50 62 54 56 Mmé:Ne 60 82 bunches

) Growth Rates (post-bript)
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Grow/Damp Measurements
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@ Unstable systems are difficult to
characterize.

@ Transient measurements - open
the loop for a short time to allow
the unstable modes to grow.

@ Record coordinates of all
bunches.

@ Longitudinal grow/damp in
BEPC-II - HOMs in various
vacuum structures.
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Grow/Damp Measurements

) Osc. Envelopes in Time Domain b) Evolution of Modes

@ Unstable systems are difficult to
characterize.

@ Transient measurements - open
the loop for a short time to allow

the unstable modes to grow.
@ Record coordinates of all
il SR bunches.

s oo @ Longitudinal grow/damp in
BEPC-II - HOMs in various
vacuum structures.

R . @ Vertical grow/damp in CESR-TA

- electron cloud.
el
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Estimating Eigenvalues

0.2

@ We post-process the data
to estimate phase-space
trajectories of the even-fill
eigenmodes.
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Estimating Eigenvalues

0.2

@ We post-process the data
to estimate phase-space
trajectories of the even-fill
eigenmodes.

@ Longitudinal mode 233 at
the ALS is shown.

0(y,) (deg@RF)
L o
o i

)
o

oo
o

o
s

Fy,) (deg@RF)
o

I3
[

)
N

o
o
o
-

15

el



Diagnostics
[e]e] J

Estimating Eigenvalues

‘ — o @ We post-process the data

7 y e to estimate phase-space
e M trajectories of the even-fill
g | \"\\M eigenmodes.
i M w @ Longitudinal mode 233 at
. W’ f the ALS is shown.

o L E @ Complex exponentials are

oS

fitted to the data to
estimate the eigenvalues.

Nl ealed'nil
20
Time (ms)
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e ELSA Measurements
@ Hardware
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iGp Highlights

@ A 500+ MHz processing
channel.

@ Finite Impulse Response
(FIR) bunch-by-bunch
filtering for feedback.

@ Control and diagnostics via
EPICS soft IOC on Linux.

@ External triggers, fiducial
synchronization,
low-speed ADCs/DACs,
general-purpose digital 1/0.
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Front/Back-end Unit

@ 1.5 GHz front-end
detection frequency.
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Front/Back-end Unit

@ 1.5 GHz front-end
detection frequency.

@ 2-cycle comb generator.
@ 1 GHz back-end frequency.
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Front/Back-end Unit

@ 1.5 GHz front-end
detection frequency.

@ 2-cycle comb generator.

@ 1 GHz back-end frequency.

@ Integrated control via iGp
— GPIO:

g ___ Soh— e Front and back-end LO
phase shifters;

— e Front and back-end
- attenuators.

el
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LLRF Prototype

@ Full cavity control and
monitoring;




ELSA Measurements
[e]ele] ]

LLRF Prototype

@ Full cavity control and
monitoring;

@ 6 RF inputs: forward,
reflected, and probe
signals;




LLRF Prototype

ELSA Measurements
[e]ele] ]

@ Full cavity control and
monitoring;

@ 6 RF inputs: forward,
reflected, and probe
signals;

@ Klystron drive in open or
closed-loop mode;



ELSA Measurements
[e]ele] ]

LLRF Prototype

@ Full cavity control and
monitoring;

@ 6 RF inputs: forward,
reflected, and probe
signals;

@ Klystron drive in open or
closed-loop mode;

@ Calibrated monitoring of
channel amplitude and
phase;
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LLRF Prototype

@ Full cavity control and
monitoring;

@ 6 RF inputs: forward,
reflected, and probe
signals;

@ Klystron drive in open or
closed-loop mode;

@ Calibrated monitoring of
channel amplitude and
phase;

@ Interlock options, digital I/O
(tuners), EPICS controls.
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e ELSA Measurements

@ Horizontal
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@ Measurement at 30 mA,
2.3 GeV;
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Horizontal Drive/Damp

2) Osc. Envelopes in Time Domain b) Evolution of Modes

iy @ Measurement at 30 mA,
= 100 1

BunchNo. ® 0 Time (ms) ModeNo. 00 Timems) 23 GeV;

@ Beam is stable, had to

= 2 L
* | itive feedback;
° =
. apply positive feedback;
g ° s
‘ngﬂs oo 05
.
) Oscillation
T
e

J

(gl
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Horizontal Drive/Damp

2) Osc. Envelopes in Time Domain b) Evolution of Modes

2 N @ Measurement at 30 mA,
L 2.3 GeV,

R eveen,. @ Beam is stable, had to

7 e, : apply positive feedback;

o .o @ Band of modes centered at
270 (-4);

clffrizel
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Horizontal Drive/Damp

2) Osc. Envelopes in Time Domain b) Evolution of Modes

@ Measurement at 30 mA,
2.3 GeV;

. o elon, @ Beam is stable, had to

10973,

apply positive feedback;
o @ Band of modes centered at
270 (-4);

Tord  ctete | @ Suggestive of ion-driven
.. instability.

clffrizel



ELSA Measurements
ooe

Horizontal Closed-loop Spectrum
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@ Measurement at 7 mA,

2.3 GeV;
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Horizontal Closed-loop Spectrum

‘ S e e nm?: @ Measurement at 7 mA,
2.3 GeV;

e ‘—’\/! @ Feedback loop is

50 100 150 200 250 300 I d.
closed;

O s i i T T T T 1
0 50 100 150 200 250 300 0 200 400 600 800 1000
Bunch number Frequency (kHz)

HCQUISTTION omvTno, MEAN 75 R BB 155 | wanen seA Gaw) WL L | wam 02 46
LS [0 s 05 saxmsos | (5000 |[seom A0 e ey rorenw

SPECTRUM AVERAGING PATTERN |150:20
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Horizontal Closed-loop Spectrum

‘ e @ Measurement at 7 mA,
2.3 GeV;

5 ‘—’\/! @ Feedback loop is

s 100 150 200 250 300 closed:
)

@ Notch at the betatron
frequency;

O s i i T T T T 1
0 50 100 150 200 250 300 0 200 400 600 800 1000
Bunch number Frequency (kHz)

HCQUISTTION omvTno, MEAN 75 R BB 155 | wanen seA Gaw) WL L | wam 02 46
LS [0 s 05 saxmsos | (5000 |[seom A0 e ey rorenw

SPECTRUM AVERAGING PATTERN |150:20

el

{



ELSA Measurements
ooe

Horizontal Closed-loop Spectrum

‘ S e | [ | @ Measurement at 7 mA,
E / 2.3 GeV;
‘_’\/ @ Feedback loop is
SR closed;

: @ Notch at the betatron
: frequency;
TR @ Can be used for
~ ... o= = . wmhe @D parasitic tune
EUEE 0 e 05 saxmsos |00 [sw.e0 A8 (s ey go7sski
.. measurement at 1 Hz
rate.
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Vertical Drive/Damp

) Osc. Envelopes in Time Domain b) Evolution of Modes

) L 3, S
100 1
e @ Measurement at 8.8 mA
- b
¢) Oscillation
T . 2.3 GeV;
¢ . . eV;
gnzs g °
H b
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. .
i 7
g :
] 2 8
g 7702 & °
: :
z L
i

J

(gl

@



ELSA Measurements
oe

Vertical Drive/Damp

) Osc. Envelopes in Time Domain b) Evolution of Modes

o 3
Y

Bunch No. Time (ms)

@ Measurement at 8.8 mA,
T ] 2.3 GeV;

Lo
z 2
@ Two bands of modes:
& 7724 =
\ , around -1 and 4;
) Oscillation
F .
%ms ' ? .
: A .
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Vertical Drive/Damp

) Osc. Envelopes in Time Domain b) Evolution of Modes

@ Measurement at 8.8 mA,
T 2.3 GeV;

@ Two bands of modes:
, around -1 and 4;

@ Combination of resistive

Rate (1/ms)

. .
wall and ions?
: | £
H i
g EA H

o
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e ELSA Measurements

@ Longitudinal
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Bursting Longitudinal Motion

ELSA Measurements
(o] Jelele]

| exrr|
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@ Large amplitude (more
than 30 degrees @ RF)
longitudinal motion;

@ Bursting at almost periodic
intervals which change
with beam current and
energy;

el
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Bursting Longitudinal Motion

@ Large amplitude (more
than 30 degrees @ RF)
longitudinal motion;

Time-domain longitudinal motion of bunch 109, 14 mA, 1.2 GeV
T T T T

@ Bursting at almost periodic
intervals which change
with beam current and
energy;

@ Time-domain plot of

‘ ‘ ‘ longitudinal position of one
20 30
Time (ms) bunch;

Longitudinal position (ADC counts)
\

el
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Bursting Longitudinal Motion

@ Large amplitude (more
Spectrogram of bunch 109, 14 mA, 1.2 Gev than 30 degrees @ RF)

130 .

ok ‘ longitudinal motion;

oI e i e @ Bursting at almost periodic
5 110l d A0 e P et intervals which change
ok ‘ with beam current and

g 110 2 : L ‘ : ‘
5105— “‘ 1 i \ ] H enel’gy;

oo 4 | 5 @ Time-domain plot of
osfi 3 : longitudinal position of one
S N N bunch;

@ Spectrogram shows large
tune shifts.
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ngitudinal Stabilization

a) Osc. Envelopes in Time Domain b) Evolution of Modes

0 b 0 .

oy 7 @ Ramping to 2.3 GeV allowed

BunchNo. *° 0 5T.me (ms) ModeNo. 0 0 ilme(ms) HH 1

us to stabilize the motion;
c) Oscillation fregs (pre-brkpt) d) Growth Rates (pre-brkpt) ’
85.20¢ . .

o | — @ Used a stripline as a weak
H £ longitudinal kicker;
2 85202 go0s
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ngitudinal Stabilization

a) Osc. Envelopes in Time Domain b) Evolution of Modes

D SRR, i @ Ramping to 2.3 GeV allowed
Tt mem R T us to stabilize the motion;
c) Oscillation fregs (pre-brkpt) d) Growth Rates (pre-brkpt)
s | —— @ Used a stripline as a weak
o ! longitudinal kicker;

s @ Mode 252 dominates;

P 0
248 250 254 256 248 250

2 2 254 256
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Longitudinal Stabilization

1eb0710/164202 Data, Fit and Error for Mode #252

@ Ramping to 2.3 GeV allowed
us to stabilize the motion;

@ Used a stripline as a weak
Ny longitudinal kicker;

@ Mode 252 dominates;

@ Good growth and damping fits
with no tune shifts.

clffrizel
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Growth Rates

ELSA, feb0710, longitudinal: growth rates of mode 252

iy @ Extract growth and damping
rates from multiple transients;

e @ Fairly linear behavior versus
for beam current;

osmst
A Q06 ms

25 30 35 40 a5
Beam current (mA)

86 e,
= @,
E e‘ee
g S,
vass ‘%s
F b
HE S
g e\.

e aren el



ELSA Measurements
00000

Growth Rates

ELSA, feb0710, longitudinal: growth rates of mode 252

iy @ Extract growth and damping
rates from multiple transients;

e @ Fairly linear behavior versus
for beam current;

@ Estimated radiation damping
R A iy = * ® time of 1.66 ms;

osmst
A Q06 ms

86 e,
= @,
E e‘ee
g S,
vass ‘%s
F b
HE S
g e\.

e aren el
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Growth Rates

S T @ Extract growth and damping

| B . rates from multiple transients;

d @ Fairly linear behavior versus
beam current;

@ Estimated radiation damping
time of 1.66 ms;

@ Added measurements below

Growth rate (ms”)

i i i i i i i i
0 H 10 15 20 25 30 £ 40 45

Seamaren instability threshold (excite the
motion, record open-loop
decay);

el
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Growth Rates

ELSA longitudinal: growth/damping rates of mode 252

@ Extract growth and damping
B , rates from multiple transients;

d @ Fairly linear behavior versus
beam current;

@ Estimated radiation damping
time of 1.66 ms;

N @ Added measurements below
DT R instability threshold (excite the
motion, record open-loop
decay);

@ Most likely there are
higher-order dynamics in play.

© Data (2010-2:7)

Growth rate (ms”)




Modeling

Amplitude (arb. units)

Fs=85.2; gr=1.16; Fcl=85.0; dr=0.48
T T T T T

ELSA Measurements

[e]e]e]e] }

@ Using measured growth
and damping rates verify
beam/feedback model;

el



Modeling

Amplitude (arb. units)
L

Fs=85.2; gr=1.16; Fcl=85.0; dr=0.48
T T T T T

ELSA Measurements
(e]e]e]e] ]

@ Using measured growth
and damping rates verify
beam/feedback model;

@ Simulated transient
matches measurement at
26.7 mA;

el
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Modeling

@ Using measured growth
and damping rates verify
beam/feedback model;

| @ Simulated transient
g il \ [T— | matches measurement at
26.7 mA;

@ Extrapolate growth rate to
200 mA (10 ms™),
assume 200 W power

BT R S amplifiers with 450 Q

kicker;

clffrizel
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Modeling

@ Using measured growth
and damping rates verify
beam/feedback model;

@ Simulated transient

D » ‘ | matches measurement at

B 26.7 mA;

@ Extrapolate growth rate to
200 mA (10 ms™),
assume 200 W power

BT R S amplifiers with 450 Q

kicker;

@ Excellent damping
performance.

clffrizel
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Outline

e ELSA Measurements

@ Digital LLRF
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LLRF Testing Results

@ Used the prototype to

Cavity voltage and phase, analog LLRF monitor CaVity Signals
| e when running with the
e existing analog LLRF;
£ 1120 /

1110 Cavity 1]

Cavity 2

B 70Tﬁa N mfe); 04 02 0
25

g2 W
223-

;.I“ 21F i

- T a— 0B s 04 2 0
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LLRF Testing Results

@ Used the prototype to
monitor cavity signals

Cavity voltage and phase, LLRF prototype (open-loop)

i T S Y S when running with the
A ] existing analog LLRF;
5 1100 T - i
et o @ Switched to prototype
105 . - . . - ..
RN LLRF system for driving
e the klystron;
| ]
—11 :4 -1.2 -1 —(_)I:‘E:"e (hoi?s? -0.4 -0.2 0
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LLRF Testing Results

@ Used the prototype to
Cavity voltage and phase, LLRF prototype (open-loop) m o n itor CaVity S ig n al S

o I when running with the
A ] existing analog LLRF;
5 1100 T - i
et o @ Switched to prototype
105 4 - - L n =
R e e e oo LLRF system for driving
e the klystron;
gsf \
g ‘\W @ Several hours running with
£ , beam (open-loop);
—11 4 -1.2 -1 _(‘)h?"e (horj?s? -0.4 -0.2 0
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LLRF Testing Results

@ Used the prototype to
monitor cavity signals
when running with the

) N existing analog LLRF;
w MM Wm W }W WMMW W WWWM WM @ Switched to prototype
a” v LLRF system for driving
T the klystron;

; @ Several hours running with
w WW“ “W‘WW ’NAWW il W MN M( WW\’W m beam (open-loop);

@ Open-loop cavity probe
signal;

Ampluude (am i
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LLRF Testing Results

Cavity 1 voltage and phase, LLRF prototype (closed-loop)

251 5

= 2505

W\ ik

il Mwuww i

ime
Standard deviations: amplitude 1.87, phase 0.0

T 155

o 1545

SURCSIN FSFFTE VPRIRAVNE RPSAINS SAAT IO SRR VISR S Y

[

0.05 01 015 02 025 03 035 04
Time (s)

ELSA Measurements
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@ Used the prototype to
monitor cavity signals
when running with the
existing analog LLRF;
Switched to prototype
LLRF system for driving
the klystron;
Several hours running with
beam (open-loop);
Open-loop cavity probe
signal;
Loop closed (5 mA @

2.3 GeV).
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Summary

@ Successfully demonstrated bunch-by-bunch control in all
three planes;
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Summary

Summary

@ Successfully demonstrated bunch-by-bunch control in all
three planes;

@ Longitudinal stability has to come first, then transverse;
@ Interesting longitudinal dynamics at large amplitudes;

@ LLRF prototype performed well (and benefited from
development with a real RF system).

el
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