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Motivation

Thresholds
Machine | hom/hn
ALS 500/50
HLS 300/5

ANKA | 200/10
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@ Applications of charged-particle circular
accelerators:

» Colliders
» Synchrotron light sources
@ In both of these applications beam stability is
crucial for achieving design performance
(collider luminosity, light source brilliance);

@ Coupled-bunch instabilities cause beam loss
or reduce performance;

@ In the past, machines were designed to
operate below the instability threshold;

@ Modern storage rings often operate far
above the threshold level and require
feedback stabilization.
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What is a Storage Ring

@ Particles are accelerated to
desired energy and injected
Injection into a storage ring;

Nominal orbit p——
.
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What is a Storage Ring

Injection

Nominal orbit p——
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@ Particles are accelerated to
desired energy and injected
into a storage ring;

@ Vacuum chamber around a
closed trajectory;
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What is a Storage Ring

@ Particles are accelerated to
desired energy and injected
N into a storage ring;
@ Vacuum chamber around a
closed trajectory;
@ Magnetic guide field elements
deflect charged particles to
follow the nominal orbit;
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What is a Storage Ring

@ Particles are accelerated to
\ desired energy and injected
Injection into a storage ring;

@ Vacuum chamber around a
closed trajectory;

@ Magnetic guide field elements
deflect charged particles to
follow the nominal orbit;

@ Charged particles under

acceleration radiate, leading to
energy loss;

» Angular acceleration only!
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What is a Storage Ring

\ Injection

(Dimtel)

@ Particles are accelerated to
desired energy and injected
into a storage ring;

@ Vacuum chamber around a
closed trajectory;

@ Magnetic guide field elements
deflect charged particles to
follow the nominal orbit;

@ Charged particles under
acceleration radiate, leading to
energy loss;

» Angular acceleration only!

@ Energy lost in one turn is
replenished in one or more RF
cavities.
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RF and Longitudinal Focusing

Synchronous particles
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@ Periodic RF voltage restores the energy lost via radiation;
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RF and Longitudinal Focusing

Synchronous particles
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@ Periodic RF voltage restores the energy lost via radiation;
@ Synchronous particle gains exactly the energy lost in one turn;
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RF and Longitudinal Focusing

Early particle Late particle
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@ Periodic RF voltage restores the energy lost via radiation;
@ Synchronous particle gains exactly the energy lost in one turn;

@ Particles above nominal energy take a longer path — positive
momentum compaction;
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RF and Longitudinal Focusing
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@ Periodic RF voltage restores the energy lost via radiation;
@ Synchronous particle gains exactly the energy lost in one turn;

@ Particles above nominal energy take a longer path — positive
momentum compaction;

@ RF voltage slope creates a potential well (longitudinal focusing);
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RF and Longitudinal Focusing

Early particle Late particle

Vrr
Ay
3 3 cc 3
1 | D) !
v v v t
! Trr !
- NxT

@ Periodic RF voltage restores the energy lost via radiation;
@ Synchronous particle gains exactly the energy lost in one turn;

@ Particles above nominal energy take a longer path — positive
momentum compaction;

@ RF voltage slope creates a potential well (longitudinal focusing);

@ Integer ratio T,/ Trr (harmonic number) is the number of stable
RF buckets where bunches of charged particles can be stored.
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Longitudinal Equation of Motion

(au)

Lol
A N o m s

o meeerespenss @ Particles can oscillate in the
] longitudinal potential well;

@ Particle motion near synchronous
position can be described by the
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following equation:
74+ 2d7 +wit=0

» d, is the radiation damping rate;
» wg is the synchrotron frequency;
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Longitudinal Equation of Motion

ot | mekeresose @ Particles can oscillate in the
] longitudinal potential well;

@ Particle motion near synchronous
I position can be described by the

Fecltons following equation:

74+ 2d7 +wit=0
» d, is the radiation damping rate;
» wg is the synchrotron frequency;

K
N

@.
Lol
A N o m s

@ This equation describes a
damped harmonic oscillator;

@ When many particles are stored in
one RF bucket, the same equation
describes center-of-mass motion.
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Transverse Motion

@ In addition to dipoles, magnetic lattice of
a storage ring includes focusing
elements;
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@ In addition to dipoles, magnetic lattice of
a storage ring includes focusing
elements;

@ Similarly to longitudinal plane, horizontal
and vertical motions at low amplitudes
behave as damped harmonic oscillators;
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Transverse Motion

@ In addition to dipoles, magnetic lattice of
a storage ring includes focusing
elements;

@ Similarly to longitudinal plane, horizontal
and vertical motions at low amplitudes
behave as damped harmonic oscillators;

@ One major difference between
longitudinal and transverse motion:

» Synchrotron period is 50-1000
revolutions;

» Transversely, particles execute multiple
betatron cycles in one revolution.
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Transverse Motion

(Dimtel)

@ In addition to dipoles, magnetic lattice of
a storage ring includes focusing
elements;

@ Similarly to longitudinal plane, horizontal
and vertical motions at low amplitudes
behave as damped harmonic oscillators;

@ One major difference between
longitudinal and transverse motion:

» Synchrotron period is 50-1000
revolutions;

» Transversely, particles execute multiple
betatron cycles in one revolution.

@ When betatron motion is observed at a
single point in the ring, it is aliased;
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Transverse Motion

@ In addition to dipoles, magnetic lattice of
a storage ring includes focusing
elements;

@ Similarly to longitudinal plane, horizontal
and vertical motions at low amplitudes
behave as damped harmonic oscillators;

@ One major difference between
longitudinal and transverse motion:

‘ “‘ » Synchrotron period is 50—1000

0s revolutions;

» Transversely, particles execute multiple
foe betatron cycles in one revolution.

@ When betatron motion is observed at a
o single point in the ring, it is aliased;

D — __} @ Only fractional part of betatron frequency
(tune) is observed.
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Beam Signals in Time and Frequency Domains

@ Single particle in a ring has time domain
signal i(t) = > 00 0(t — nTey)

n=—oo
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Beam Signals in Time and Frequency Domains
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@ Single particle in a ring has time domain
signal i(t) => 72 0(t— nTyy)

@ Frequency domain:
l(w) = wrev Z;o:_oo d(w — pwrey)
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Beam Signals in Time and Frequency Domains

@ Single particle in a ring has time domain

signal i(t) => 72 0(t— nTyy)

@ Frequency domain:
I(w) = Wrey Z;o:_oo d(w — Pwrey)

e ¢ Te Tt @ Placing identical particles in all RF
buckets:

> i(t)=Y 2 (t— nTgE)

» (W) = wre 352 6(w — PwrE)

)
wrF = 27/Trr
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Beam Signals in Time and Frequency Domains

(Dimtel)

@ Single particle in a ring has time domain
signal i(t) = >0 6(t — nTey)
@ Frequency domain:
l(w) = Wrev Zzo:_oo 5(0‘) - pwrev)
@ Placing identical particles in all RF
buckets:
> i(t) = 3050 0(t — nTg)
» (W) = wre 352 6(w — PwrE)
@ Assumption of infinitely short bunches
produces unphysically wide spectrum;
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Beam Signals in Time and Frequency Domains

I

Trr

WRF

(Dimtel)

@ Single particle in a ring has time domain
signal i(t) => 72 0(t— nTyy)
@ Frequency domain:
l(w) = Wrev Z;o:_oo 5(&) - pwrev)
@ Placing identical particles in all RF
buckets:
> i(t) = ZZ“;_OO 6(t — nTgg)
> l(w) = wre X0 0(w — pwrr)
@ Assumption of infinitely short bunches
produces unphysically wide spectrum;

@ For Gaussian bunch with RMS bunch
length o:
l(w) = Qurre " 77/2 5% §(w — pwrr)
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Synchrotron and Betatron Oscillation

@ Synchrotron oscillation is a phase modulation of beam signal;
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Synchrotron and Betatron Oscillation

@ Synchrotron oscillation is a phase modulation of beam signal;

@ At low amplitudes of motion, synchrotron sidebands appear
around the harmonics of the revolution frequency;
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Synchrotron and Betatron Oscillation

@ Synchrotron oscillation is a phase modulation of beam signal;

@ At low amplitudes of motion, synchrotron sidebands appear
around the harmonics of the revolution frequency;

@ At larger amplitudes of motion (higher phase modulation index),
harmonics of synchrotron frequency become significant;
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Synchrotron and Betatron Oscillation

@ Synchrotron oscillation is a phase modulation of beam signal;

@ At low amplitudes of motion, synchrotron sidebands appear
around the harmonics of the revolution frequency;

@ At larger amplitudes of motion (higher phase modulation index),
harmonics of synchrotron frequency become significant;

@ Signal repeats at multiples of RF frequency, with increasing phase
modulation index, i.e. larger synchrotron harmonics;
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Synchrotron and Betatron Oscillation

@ Synchrotron oscillation is a phase modulation of beam signal;

@ At low amplitudes of motion, synchrotron sidebands appear
around the harmonics of the revolution frequency;

@ At larger amplitudes of motion (higher phase modulation index),
harmonics of synchrotron frequency become significant;

@ Signal repeats at multiples of RF frequency, with increasing phase
modulation index, i.e. larger synchrotron harmonics;

@ Betatron oscillation causes the beam to pass closer to or farther
from the detector;

@ Amplitude modulation;
@ Aliased betatron frequency sidebands of the revolution harmonics;

(Dimtel) Feedback CSS-ScVC 11/61



Synchrotron and Betatron Oscillation

@ Synchrotron oscillation is a phase modulation of beam signal;

@ At low amplitudes of motion, synchrotron sidebands appear
around the harmonics of the revolution frequency;

@ At larger amplitudes of motion (higher phase modulation index),
harmonics of synchrotron frequency become significant;

@ Signal repeats at multiples of RF frequency, with increasing phase
modulation index, i.e. larger synchrotron harmonics;

@ Betatron oscillation causes the beam to pass closer to or farther
from the detector;

@ Amplitude modulation;
@ Aliased betatron frequency sidebands of the revolution harmonics;

@ For rigid bunch centroid motion, full information appears in frp/2
band above or below each RF harmonic.
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Metrology Light Source

Parameters
Parameter Value
Circumference 48 m
RF frequency 500 MHz
Harmonic number | 80
Energy 105-629 MeV
Design current 100 mA

v

Application: Synchrotron Light Source,
Primary Radiation Standard.
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Hefei Light Source

. Parameters

(Dimtel)

Parameter Value
Circumference 66 m

RF frequency 204 MHz
Harmonic number | 45
Energy 800 MeV
Design current 300 mA

v

Application: Synchrotron Light Source.

Feedback
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Australian Synchrotron

Parameters
Parameter Value
Circumference 216 m
RF frequency 500 MHz
Harmonic number | 360
Energy 3 GeV
Design current 200 mA

v

Image courtesy of Australian Synchrotron

Application: Synchrotron Light Source.
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MAX IV 3 GeV

Image from Lund University Media Bank

Parameters
Parameter Value
Circumference 528 m
RF frequency 100 MHz
Harmonic number | 176
Energy 3 GeV
Design current 500 mA

Application: Synchrotron Light Source.
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KEK B-Factory

Parameters
Parameter Value
Circumference 3016 m
RF frequency 509 MHz
Harmonic number | 5120
Energy 4/7 GeV
Design current 3.6/2.6 A

g £
Image credit: KEK

Application: Two ring e*/e~ collider.
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Coupled-bunch Instabilities

Vacuum chamber

n+2

bunch n

Resonant structure

M~ ]
\/
n+l

®*—

- —

bunch n+1

(Dimtel)

@ Bunch passing through a resonant
structure excites a wakefield which is
sampled by the following bunches —
a coupling mechanism;
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Coupled-bunch Instabilities

@ Bunch passing through a resonant

I structure excites a wakefield which is
sampled by the following bunches —
Vacuum chamber v p H y H g
M b a coupling mechanism;
o— ®o— . .
J— @ In practice the wakefields have much
T longer damping times than illustrated
here;
bunch n bunch n+1 bunch n+2

Inere
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Coupled-bunch Instabilities

Resonant structure

M~ ]
Vacuum chamber ~—_
n+2 n+l n
*— *— *—
/\—
L

bunc\h n bunch‘ n+l bunch‘ n+2
\/\AMWM
—-me

(Dimtel)

@ Bunch passing through a resonant

structure excites a wakefield which is
sampled by the following bunches —
a coupling mechanism;

In practice the wakefields have much
longer damping times than illustrated
here;

Longitudinal bunch oscillation —
phase modulation of the wakefield —
slope of the wake voltage sampled by
the following bunches determines the
coupling.
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Coupled-bunch Instabilities

Resonant structure

Vacuum chamber ~—_
n+2 n+1 n
o— ®o— o—

bunc\h n bunch‘ n+l bunch‘ n+2
\/\AMWM
—-me

(Dimtel)

@ Bunch passing through a resonant

structure excites a wakefield which is
sampled by the following bunches —
a coupling mechanism;

In practice the wakefields have much
longer damping times than illustrated
here;

Longitudinal bunch oscillation —
phase modulation of the wakefield —
slope of the wake voltage sampled by
the following bunches determines the
coupling.

For certain combinations of wakefield
amplitudes and frequencies the
overall system becomes unstable.
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Coupled-bunch Instabilities: Eigenmodes and
Eigenvalues

@ A system of N bunches (coupled harmonic oscillators) has N
eigenmodes;
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Coupled-bunch Instabilities: Eigenmodes and
Eigenvalues

@ A system of N bunches (coupled harmonic oscillators) has N
eigenmodes;

@ From symmetry considerations we find that the eigenmodes
correspond to Fourier vectors;
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Coupled-bunch Instabilities: Eigenmodes and
Eigenvalues

@ A system of N bunches (coupled harmonic oscillators) has N
eigenmodes;

@ From symmetry considerations we find that the eigenmodes
correspond to Fourier vectors;

@ Mode number m describes the number of oscillation periods over
one turn;
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Coupled-bunch Instabilities: Eigenmodes and
Eigenvalues

@ A system of N bunches (coupled harmonic oscillators) has N
eigenmodes;

@ From symmetry considerations we find that the eigenmodes
correspond to Fourier vectors;

@ Mode number m describes the number of oscillation periods over
one turn;

@ Wakefields affect the modal eigenvalues in both real (growth rate)
and imaginary (oscillation frequency) parts;

(Dimtel) Feedback CSS-SCcVC 20/ 61



Coupled-bunch Instabilities: Eigenmodes and
Eigenvalues

@ A system of N bunches (coupled harmonic oscillators) has N
eigenmodes;

@ From symmetry considerations we find that the eigenmodes
correspond to Fourier vectors;

@ Mode number m describes the number of oscillation periods over
one turn;

@ Wakefields affect the modal eigenvalues in both real (growth rate)
and imaginary (oscillation frequency) parts;

@ Motion of bunch k oscillating in mode mis given by:
Ame27rkm/NeAmt

» A, — modal amplitude;
» A, — complex modal eigenvalue.
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Modal Oscillation Example

Mode 1

il | @ Harmonic number of 8;

4 | @ Top plot — mode 1;
| | | ‘ | ] @ Bottom — mode 7;

@ All bunches oscillate at the
same amplitude and frequency,
but different phases;

; @ Cannot distinguish modes m
o ﬁ and N — m (or —m) from a
o : single turn snapshot.

1 2 3 4 5 6 7 8
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Modal Oscillation W

Mode

1

ith Damping

(Dimtel)

7 8

@ Same modes with damping.
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Coupled-bunch Instabilities: Eigenvalues and
Impedances

@ Beam interacts with wakefields (impedances in frequency domain)
at synchrotron or betatron sidebands of revolution harmonics;
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Coupled-bunch Instabilities: Eigenvalues and
Impedances

@ Beam interacts with wakefields (impedances in frequency domain)
at synchrotron or betatron sidebands of revolution harmonics;

@ Impedance functions are aliased, since they are sampled by the
beam;

(Dimtel) Feedback CSS-ScVCe 23/61



Coupled-bunch Instabilities: Eigenvalues and
Impedances

@ Beam interacts with wakefields (impedances in frequency domain)
at synchrotron or betatron sidebands of revolution harmonics;

@ Impedance functions are aliased, since they are sampled by the
beam;

2
e Longitudinal: Ay = (= + iws) + %Z“eff(mwo + ws);

rad

o Effective impedance: ZI*ff(w) = Y252 | B4t Zl (s + w)
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Coupled-bunch Instabilities: Eigenvalues and
Impedances

@ Beam interacts with wakefields (impedances in frequency domain)
at synchrotron or betatron sidebands of revolution harmonics;

Impedance functions are aliased, since they are sampled by the
beam;

Longitudinal: Ay = (— Al

rad

. 7raefrzlo .
+ I(.US) + EOTJSZHeff(mWO + ws),

Effective impedance: ZI(w) = >°0° 22t Zll (puy + w)
o Transverse: Ap = (— ALy + iwg) — SLheslo ZLeff(mug + )

wBO

Effective impedance: Z*M(w) = >7°  Z*(puwr + w)
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Feedback Topologies

@ Historically, people started fighting coupled-bunch instabilities in
the frequency domain by building mode-by-mode systems;

» Driven by relatively small number of bunches in the early machines;
» Correspondingly, few modes and even fewer unstable modes.
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@ Such systems rapidly became impractical in storage rings with
hundreds or thousands of bunches;
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Feedback Topologies

@ Historically, people started fighting coupled-bunch instabilities in
the frequency domain by building mode-by-mode systems;

» Driven by relatively small number of bunches in the early machines;
» Correspondingly, few modes and even fewer unstable modes.

@ Such systems rapidly became impractical in storage rings with
hundreds or thousands of bunches;

@ In the mid-1980s first time-domain systems started to appear,
performing bunch-by-bunch processing;

@ Progress of DSP technology in 1990s and 2000s led to the
development of programmable digital systems;
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Feedback Topologies

@ Historically, people started fighting coupled-bunch instabilities in
the frequency domain by building mode-by-mode systems;

» Driven by relatively small number of bunches in the early machines;
» Correspondingly, few modes and even fewer unstable modes.

@ Such systems rapidly became impractical in storage rings with
hundreds or thousands of bunches;

@ In the mid-1980s first time-domain systems started to appear,
performing bunch-by-bunch processing;

@ Progress of DSP technology in 1990s and 2000s led to the
development of programmable digital systems;

@ Pioneered at SLAC by Dr. John D. Fox.
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Bunch-by-bunch Feedback

Definition
In bunch-by-bunch feedback approach the actuator signal for a given
bunch depends only on the past motion of that bunch.

BPM Sensor '

| |
| - | Beam | -
_\QE___F>.____-__-..-___\ _____ é%---,—}
| - N | | \
I I
|

»| Front—end I Back—end

@ Bunches are processed sequentially;

@ Correction kicks are applied one or more turns later;
@ Diagonal feedback — computationally efficient;

@ Extremely popular in storage rings — why?
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MIMO Model of Bunch-by-bunch Feedback

o Beam dynamics %
uy Y1
G(w)
UN—1 YN-1
.\ 1  Feedback |
L H(W) :
; H(w) i
; H(w)[<

@ N bunch positions and feedback kicks;
@ Diagonal feedback matrix H(w)l;
@ Invariant under coordinate transformations.
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MIMO Model of Bunch-by-bunch Feedback

o E‘ o) Beam dynamics '
-~ ! 1) i
e | KX
" 1 Feedback |
: H(w) :
; H(w) ;
; H(w) [<—

@ Coordinate transformation to eigenmode basis;
@ N feedback loops - one per mode;
@ Identical feedback applied to each mode.
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Bunch-by-bunch Feedback

BPM Sensor' : Actuator Kicker structure |

|

| - | Beam -
- - - o = o e @D = = = == - -
\EE.. \5 | é; \9

Back-end

»{ Front—-end

@ Sensor (pickup);
@ Analog front-end;
@ Controller;

@ Analog back-end;
@ Actuator (kicker).
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Bunch-by-bunch Feedback

BPM Sensor' Beam : Actuator Kicker structure |

1
! ’ ! ‘

_lég___,.}_____.__-.--___\ _____ - -
1 - N 1 \

Back-end

»{ Front—-end

@ Sensor (pickup);
@ Analog front-end;
@ Controller;

@ Analog back-end;
@ Actuator (kicker).
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Beam Position Sensor
A B

@ To sense beam position we typically use
capacitive button beam position monitors
(BPMs);

(Dimtel) CSS-SCVC 32/61



Beam Position Sensor
A B

@ To sense beam position we typically use
capacitive button beam position monitors
(BPMs);

@ Arrangement of pickups is driven by the
need to avoid synchrotron radiation fan;

» Horizontal/vertical buttons are easier to
process.
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Beam Position Sensor
A B

@ To sense beam position we typically use
capacitive button beam position monitors
(BPMs);

@ Arrangement of pickups is driven by the
need to avoid synchrotron radiation fan;

» Horizontal/vertical buttons are easier to
process.

@ Buttons couple capacitively to the beam,
differentiating bunch current shape;

@ BPM signals are wideband differentiated
pulses with 100—400 ps duration;
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Beam Position Sensor
A B

To sense beam position we typically use

capacitive button beam position monitors

(BPMs);

Arrangement of pickups is driven by the

need to avoid synchrotron radiation fan;
» Horizontal/vertical buttons are easier to

process.
Buttons couple capacitively to the beam,
differentiating bunch current shape;

BPM signals are wideband differentiated
pulses with 100—400 ps duration;

Differentiation means sensor gain
increases with frequency.
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Bunch-by-bunch Feedback

BPM Sensor' : Actuator Kicker structure |

|

| - | Beam -
- - - e = o e @D = = = == - -
\EE.. \5 | é; \9

Back-end

»{ Front—-end

@ Sensor (pickup);
@ Analog front-end;
@ Controller;

@ Analog back-end;
@ Actuator (kicker).
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Back-end

Front—end

@ Sensor (pickup);
@ Analog front-end;
@ Controller;

@ Analog back-end;
@ Actuator (kicker).
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BPM Hybrid Network

A

C

A (180°) D (A)
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@ First stage of BPM signal processing — separating X/Y/Z signals
(some of you might recognize monopulse comparator structure);
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BPM Hybrid Network

A—A(wo") D (A) c-4 A (180°) A+B-D-C AY
C ls @y copAEl B (0°) B+C-A-D AX
D A as?) b (a)E=2 A (180°) B+D-A-C _ Q
E ooy compit? B (o) A+B+C+D =

@ First stage of BPM signal processing — separating X/Y/Z signals
(some of you might recognize monopulse comparator structure);

@ Since we are digitizing in the end, why not digitize raw signals?
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BPM Hybrid Network

A_tfa (180°) D (A) c-4 A (180°) D (A) A+B-D-C AY
¢ 1wy c@pAte B ¢ BrC-A-D AX
D A as?) b (a)E=2 A 805 b (ay| BFD-4-C Q@
E ooy compit? 8 coylAtBrCHD =

@ First stage of BPM signal processing — separating X/Y/Z signals
(some of you might recognize monopulse comparator structure);

@ Since we are digitizing in the end, why not digitize raw signals?
@ For X and Y we are dealing with small differences of large signals;
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BPM Hybrid Network

A_tfa (180°) D (A) c-4 A (180°) D (A) A+B-D-C AY
¢ 1wy c@pAte B ¢ BrC-A-D AX
D A as?) b (a)E=2 A 805 b (ay| BFD-4-C Q@
E ooy compit? 8 coylAtBrCHD =

@ First stage of BPM signal processing — separating X/Y/Z signals
(some of you might recognize monopulse comparator structure);

@ Since we are digitizing in the end, why not digitize raw signals?
@ For X and Y we are dealing with small differences of large signals;

@ If we can reject the common-mode at 20-30 dB level, that is also
the gain of low-noise amplifier we can use to improve sensitivity.
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Analog Front-end Design

BPM hybrid Bandpass filter Variable LNA Mixer Lowpass filter
attenuator

[} A
£ - —~_

B To the ADC
o el —~_ [—= x "

|
g c =
L————»D
Phase shifter

Frequency multiplier

@ Front-end requirements:

» Low amplitude and phase noise;
» Wideband to ensure high isolation between neighboring bunches.
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Analog Front-end Design

BPM hybrid Bandpass filter Variable LNA Mixer Lowpass filter
attenuator

[} A
£ —~

—»(B To the ADC
’:; el —~_ [—= x -

|
S S TR
L D

Phase shifter

Frequency multiplier

@ Front-end requirements:

» Low amplitude and phase noise;
» Wideband to ensure high isolation between neighboring bunches.

@ Input bandpass filter is an analog FIR filter that replicates BPM
pulse with spacing, matched to detection LO period;
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Analog Front-end Design

BPM hybrid Bandpass filter Variable LNA Mixer Lowpass filter
attenuator

A

B To the ADC

el —~_ [—= T T
C —~_
D

m

Phase shifter

Frequency multiplier

@ Front-end requirements:
» Low amplitude and phase noise;
» Wideband to ensure high isolation between neighboring bunches.
@ Input bandpass filter is an analog FIR filter that replicates BPM
pulse with spacing, matched to detection LO period;
@ Detection frequency choice:
» High frequencies for sensitivity;
» Must stay below the propagation cut-off frequency of the vacuum
chamber.
@ Local oscillator adjusted for amplitude (transverse) or phase
(longitudinal) detection.
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Bunch-by-bunch Feedback

BPM Sensor' : Actuator Kicker structure |
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Back-end

»{ Front—-end

@ Sensor (pickup);
@ Analog front-end;
@ Controller;

@ Analog back-end;
@ Actuator (kicker).
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Bunch-by-bunch Feedback

BPM Sensor' : Actuator Kicker structure |

|

| - | Beam -
- - - e = o e @D = = = == - -
\EE.. \5 | é; \9

Back-end

»{ Front—-end

@ Sensor (pickup);
@ Analog front-end;
@ Controller;

@ Analog back-end;
@ Actuator (kicker).
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Baseband Signal Processor

Triggers

Fiducial
RF clock

Temperature and
supply monitoring

In]gutI ADC -

FPGA

Y

Acquisition <_f

memory

@ Block diagram of a type frequently seen in accelerator context:

ADC, FPGA, and DAC;
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Baseband Signal Processor

Triggers

Fiducial

RF clock

Input

Temperature and
supply monitoring

ADC

DAC Output .

Y

FPGA

Acquisition
memory

L

L Slow analog

and digital /O

@ Block diagram of a type frequently seen in accelerator context:
ADC, FPGA, and DAC;

@ ADC, DAC: 12—-14 bit, 500-600 MSPS, 400 ps rise/fall times;
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Baseband Signal Processor

Triggers

Fiducial

RF clock

Input,

Temperature and
supply monitoring

ADC

FPGA

Y

Acquisition
memory

L

@ Block diagram of a type frequently seen in accelerator context:

ADC, FPGA, and DAC;
@ ADC, DAC: 12—-14 bit, 500-600 MSPS, 400 ps rise/fall times;

@ FPGA implements algorithmically simple, but computationally

intensive processing.
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Inside the FPGA

FIR filter
chain
Bunch-by-bunch
enable & coeff

FIR filter
chain

Uneven stepping
demultiplexer

FIR filter
Downsampling
turn selector

Drive signal with bunch-by-bunch enable

Uneven stepping
multiplexer

From the ADC

Holdbuffer

Adjustable Three tap To the DAC
one turn delay kick shaper FIR

chain
FIR filter

chain
FIR filter

chain

@ Multiple filter chains to match FPGA processing rate to the bunch
crossing rate;
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Inside the FPGA

FIR filter
chain
Bunch-by-bunch
enable & coeff

FIR filter
Uneven stepping

Drive signal with bunch-by-bunch enable

Uneven stepping
multiplexer

Three tap To the DAC
kick shaper FIR

Adjustable
one turn delay

chain
demultiplexer Holdbuffer

FIR filter
Downsampling
turn selector

From the ADC

chain
FIR filter

chain
FIR filter

chain

@ Multiple filter chains to match FPGA processing rate to the bunch
crossing rate;

@ Uneven stepping scheme — use groups of nand n+ 1 bunches to
make sure signal from a given bunch ends up in the same filter
chain on consecutive turns;
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Inside the FPGA

FIR filter
chain
Bunch-by-bunch
enable & coeff

FIR filter
even stepping
demultiplexer

chain
Downsampling
turn selector

Drive signal with bunch-by-bunch enable

From the ADC tepping

n:
multiplexer

FIR filter
chain

Three tap To the DAC
kick shaper FIR

Adjustable
one turn delay

Holdbuffer

FIR filter
chain

@ Multiple filter chains to match FPGA processing rate to the bunch
crossing rate;

@ Uneven stepping scheme — use groups of nand n+ 1 bunches to
make sure signal from a given bunch ends up in the same filter
chain on consecutive turns;

@ Bunch-by-bunch excitation and feedback enables;
@ Back-end compensation.
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Feedback Filter

@ Requirements:

0; I ] » Adjustable phase shift at the tune
g, ?TT i X frequency;
8 s lll Hl ] » DC rejection to get rid of constant

-5 . = - - - orbit offsets;

Gainat e e 2048 » Low group delay.

” ; ] @ Filter design approach — sample
5 0 ] one period of a sine wave;
e ] » Group delay is } of oscillation

% 50 e e1rg‘)coy w 150 200 periOd;

"o Phase at he tune: 963 degrees » Nicely parameterized, often close
g 10 to optimal.
3 0 ] @ More sophisticated design methods
= 1 are required when large

0 50

perturbations are present or with
variable beam dynamics, etc.

100
Frequency (kHz)
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Bunch-by-bunch Feedback

BPM Sensor' : Actuator Kicker structure |
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Back-end

»{ Front—-end

@ Sensor (pickup);
@ Analog front-end;
@ Controller;

@ Analog back-end;
@ Actuator (kicker).
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Bunch-by-bunch Feedback

Sensor' : Actuator Kicker structure |

|

| - | Beam -
- - - e = o e @D = = = == - - -
\EE.. \} | <§ \)

Front-end Back-end
@ Sensor (pickup);
@ Analog front-end;
@ Controller;
@ Analog back-end;
@ Actuator (kicker).
o =] = = =
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Analog Back-end

fre Step recovery diode
500 MHz frequency multiplier

CF = 1250 MHz

To the power
/\ amplifier
L= " e

Bessel filter

From the DAC .

Variable attenuator Amplifier

Mixer

@ Longitudinal kickers are usually built as highly damped (low Q,
wideband) cavities at 1-1.5 GHz;
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Analog Back-end

fre Step recovery diode
500 MHz frequency multiplier

CF = 1250 MHz

To the power
From the DAC /\ amplifier
> I

Bessel filter

Mixer Variable attenuator Amplifier

@ Longitudinal kickers are usually built as highly damped (low Q,
wideband) cavities at 1-1.5 GHz;
@ Baseband kick must be upconverted to the right frequency to drive

these;
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Analog Back-end

2o mutiler F
fre Step recovery diode

frequency multiplier

500 MHz

CF = 1250 MHz

To the power
From the DAC /\ amplifier
= >

Mixer Variable attenuator Amplifier Bessel filter

@ Longitudinal kickers are usually built as highly damped (low Q,
wideband) cavities at 1-1.5 GHz;

@ Baseband kick must be upconverted to the right frequency to drive
these;

@ Phase linearity is critical to maintain the same feedback for
different modes;
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Analog Back-end

2 mttipler F
fre Step recovery diode |

500 MHz frequency multiplier 2% fir
1000 MHz

CF = 1250 MHz

To the power
/\ amplifier
L= " e

Mixer Variable attenuator Amplifier Bessel filter

From the DAC

@ Longitudinal kickers are usually built as highly damped (low Q,
wideband) cavities at 1-1.5 GHz;

@ Baseband kick must be upconverted to the right frequency to drive
these;

@ Phase linearity is critical to maintain the same feedback for
different modes;

@ Constant group-delay filters are used to create single-sideband
modulation to efficiently drive kicker cavity.
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Bunch-by-bunch Feedback

Sensor' : Actuator Kicker structure |

|

| - | Beam -
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Front-end Back-end
@ Sensor (pickup);
@ Analog front-end;
@ Controller;
@ Analog back-end;
@ Actuator (kicker).
o =] = = =
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Bunch-by-bunch Feedback

! | 1 ; |

| . Sensor | Beam | Actuator Kicker SU’UCtU’re !
8IS T W S M L
| - . ‘ . -

1

1

Front-end Back-end
@ Sensor (pickup);
@ Analog front-end;
@ Controller;
@ Analog back-end;
@ Actuator (kicker).
o = - = =
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Transverse Kicker

@ 50 Q striplines driven Differentially;
@ Counter-propagating beam and kick signals;
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Transverse Kicker

@ 50 Q striplines driven Differentially;
@ Counter-propagating beam and kick signals;
@ For 2 ns bunch spacing maximum stripline length is 1 ns:
» Fill time of 1 ns;
» Beam propagation time of 1 ns;
» Longer striplines will couple the kick to neighboring bunches.
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Transverse Kicker

Shunt impedance of a 31.2 cm stripline, normalized to unity
T T T T T

ce (arb. units)

Impedant

0 200 400 800 1000 1200

Freueny o)
@ 50 Q striplines driven Differentially;
@ Counter-propagating beam and kick signals;
@ For 2 ns bunch spacing maximum stripline length is 1 ns:

» Fill time of 1 ns;

» Beam propagation time of 1 ns;

» Longer striplines will couple the kick to neighboring bunches.
@ Shorter striplines do better in frequency domain, have smaller

kick.
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How Does One Characterize an Unstable System?
@ Standard methods of characterization:

» Frequency domain — transfer function;
» Time domain — step/pulse response.
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How Does One Characterize an Unstable System?

@ Standard methods of characterization:

» Frequency domain — transfer function;
» Time domain — step/pulse response.

@ These methods fail for unstable beam;
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How Does One Characterize an Unstable System?

@ Standard methods of characterization:
» Frequency domain — transfer function;
» Time domain — step/pulse response.

@ These methods fail for unstable beam;

@ In 1990s our group at SLAC developed so-called transient
diagnostics:
» Upon some trigger, turn off feedback and start recording beam
motion;
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How Does One Characterize an Unstable System?

@ Standard methods of characterization:
» Frequency domain — transfer function;
» Time domain — step/pulse response.
@ These methods fail for unstable beam;
@ In 1990s our group at SLAC developed so-called transient

diagnostics:
» Upon some trigger, turn off feedback and start recording beam

motion;
» Unstable motion grows from ever-present noise-floor level

excitation;
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How Does One Characterize an Unstable System?

@ Standard methods of characterization:
» Frequency domain — transfer function;
» Time domain — step/pulse response.
@ These methods fail for unstable beam;
@ In 1990s our group at SLAC developed so-called transient
diagnostics:
» Upon some trigger, turn off feedback and start recording beam

motion;
» Unstable motion grows from ever-present noise-floor level

excitation;
» After an adjustable open-loop time period, turn feedback on;
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How Does One Characterize an Unstable System?

@ Standard methods of characterization:
» Frequency domain — transfer function;
» Time domain — step/pulse response.
@ These methods fail for unstable beam;
@ In 1990s our group at SLAC developed so-called transient
diagnostics:
» Upon some trigger, turn off feedback and start recording beam
motion;
» Unstable motion grows from ever-present noise-floor level
excitation;
» After an adjustable open-loop time period, turn feedback on;
@ Resulting data set captures open-loop growth of the fastest
unstable modes and closed-loop damping;
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How Does One Characterize an Unstable System?

@ Standard methods of characterization:
» Frequency domain — transfer function;
» Time domain — step/pulse response.

@ These methods fail for unstable beam;
@ In 1990s our group at SLAC developed so-called transient
diagnostics:
» Upon some trigger, turn off feedback and start recording beam
motion;
» Unstable motion grows from ever-present noise-floor level
excitation;
» After an adjustable open-loop time period, turn feedback on;
@ Resulting data set captures open-loop growth of the fastest
unstable modes and closed-loop damping;

@ Used to characterize driving terms (impedances) and feedback

performance, optimize tuning.
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Grow/damp Measurements from ESRF

a) Osc. Envelopes in Time Domain b) Evolution of Modes

@ Grow/damp at 100 mA, 8 ms
growth time;

Bunch No. 0 Time (ms) ModeNo. 0 0 Time (ms)
¢) Oscillation fregs (pre-brkpt) d) Growth Rates (pre-brkpt)
135855 o
o
3 ° o o7
B g
> =
2 1358 4 o6
2 g
g o o
I 05
)
135. ° 04 o
986 988 990 992 986 988 990 992
Mode No. Mode No.
&) Oscillation fregs (post-brkpt) ) Growth Rates (post-brkpt)
135.
-05
= o o °© 0850 ¢
< 13585 F 2 06
> =
g = -065
g R °
§ 13538 e °
o« -0.75
e -08
135.75 o
986 988 990 992 986 988 990 992
Mode No. Mode No.

ESRF:apr2517/123303: lo= 100.44mA, Dsamps= 1, ShifGain= 6, Nbun= 992,
AtFs: G1=137.054, G2= 0, Ph1=83.6019, Ph2=0, Brkpt= 2900, Calib= 0.36.



Grow/damp Measurements from ESRF

a) Osc. Envelopes in Time Domain b) Evolution of Modes

@ Grow/damp at 100 mA, 8 ms
growth time;

@ Only resistive wall modes;

Time (ms) Mode No. 00 Time (ms)
¢) Oscillation fregs (pre-brkpt) d) Growth Rates (pre-brkpt)
135855 o
o
3 ° o o7
B g
> =
2 1358 4 o6
3 g
g o o
I 05
)
135. ° 04 o
986 988 990 992 986 988 990 992
Mode No. Mode No.
&) Oscillation fregs (post-brkpt) ) Growth Rates (post-brkpt)
135.
-05
= o o °© -085)
< 13585 F 2 06
> =
g = -065
§ ° °
S 5 -0.7
§ 13538 e °
o« -0.75
e -08
135.75 o
986 988 990 992 986 988 990 992
Mode No. Mode No.

ESRF:apr2517/123303: lo= 100.44mA, Dsamps= 1, ShifGain= 6, Nbun= 992,
AtFs: G1=137.054, G2= 0, Ph1=83.6019, Ph2=0, Brkpt= 2900, Calib= 0.36.
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Grow/damp Measurements from ESRF

a) Osc. Envelopes in Time Domain b) Evolution of Modes

300

200

100

%00 ¢
Bunch No. 0 Time (ms) ModeNo. 0 0 Time (ms)

¢) Oscillation fregs (pre-brkpt)

d) Growth Rates (pre-brkpt)
° o

135.85

°
) ° o o7
B g
> =
g 1358 e o6
E 2
g & °
& 05
°
135. ° 04 o
386 988 990 992 %86 988 990 902
Mode No. Mode No.
&) Oscillation fregs (post-bript) 1) Growth Rates (post-brkpt)
135.
-05

= o o °© 055 o
T 13585 ° g 06
g < 065
g R °
§ 13538 e °
& 075

° -08

135.75 o
386 %88 990 992 986 988 990 902
Mode No. Mode No.

ESRF:apr2517/123303: lo= 100.44mA, Dsamps= 1, ShifGain= 6, Nbun= 992,
AtFs: G1=137.054, G2= 0, Ph1=83.6019, Ph2= 0, Brkpt= 2900, Calib= 0.36
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@ Grow/damp at 100 mA, 8 ms
growth time;

@ Only resistive wall modes;

@ Damping rates non-uniform —
low frequency response of the
amplifier?
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Grow/damp Measurements from ESRF

apr2517/123303 Data, Fit and Error for Mode #987
T T T T T

@ Grow/damp at 100 mA, 8 ms
growth time;

y %0 S IS TS R K N UG s VI I O

0 5 10 15 20 25 30 35 40

Mode #988
T

@ Only resistive wall modes;

! ! ! ! ! Data
- - - Fit . .
g0 i\\ o Erer @ Damping rates non-uniform —

low frequency response of the

0 5 10 15 20 25 30 35 40
Y amplifier?
——Data
201 - = =Fit .
g '°,/'\. --eoll @ Fits look very clean, textbook
S exponential transients;
Mode #990
30 T T T T
| Data
201 i Fit
5 /\ == Error
10 b
0 5 2 10 15 20 25 30 35 40
Mode #991
200 T T T T
—— Data
Fit
£ 100 Jk - = Error
o0 5 = ‘.10 15 20 2‘5 50 ;5 40

Time (ms)
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Grow/damp Measurements from ESRF

Frequency (kHz)

a) Osc.

@ Grow/damp at 100 mA, 8 ms
b) Evouon of Modes. growth time;

@ Only resistive wall modes;
@ Damping rates non-uniform —

0 low frequency response of the
80! " = ra
Bunch No_ozoc 0 Time (ms) Mode No. 00 Time (ms) amp“fler?

15 OCEn 233 pro-brign ) Growth Ratesre-br @ Fits look very clean, textbook

sl 0 o exponential transients;

139, H o . -

e e 21 @ Filled to 200 mA, not limited by

1335 2 . e

s e instabilities;

! 33'386 988 990 992 ;86 988 990 992
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Grow/damp Measurements from ESRF

@ Grow/damp at 100 mA, 8 ms
growth time;

300

@ Only resistive wall modes;

250

@ Damping rates non-uniform —
low frequency response of the
amplifier?

@ Fits look very clean, textbook
exponential transients;

@ Filled to 200 mA, not limited by
instabilities;

@ Growth time too long, when
feedback turns on there is not
enough gain to damp the
motion.

200

Amplitude (um)
@
3
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Parasitic Tune Measurement

SYSTEM: IGPF DEVICE:HorEle .
- g @ Transverse feedback in
S DA®NE operating in the X
plane;

Frequency (kHz)

L

L o Jws 04 paxmsos |[oeewe] oo | 100 svors i
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Parasitic Tune Measurement

2
15
c 1

Max RMS channel (filtered)

o5

T o

05
R [ e ]
0 02040508 1 12 1.4 16

Time (ms)

p Averaged spectrum

10

a5

........
200 400 600 80D 10001200 1400 1600

Frequency (kHz)

T e o

EEEH s 04 emsos 20000 ] oo |05 g a0

(Dimtel)

@ Transverse feedback in
DA®NE operating in the X
plane;

@ Averaged beam spectrum
(lower right) shows a notch;
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Parasitic Tune Measurement

SYSTEN: IGPF DEVICE:HorEle =2l :| .
e g M ——" @ Transverse feedback in
5 X DA®NE operating in the X
plane;
— @ Averaged beam spectrum
" (lower right) shows a notch;
g es—— @ This notch is a key to the
P ey parasitic tune measurement
ACQUIS o MEN 1 mREp14 | e RAL Min R HH
B L s o4 wemsos | m\lw' | capability.
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Why Is There a Notch?

Detection noise Disturbances

Beam

Transverse position

@ Beam response is resonant at

(Dimtel)
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the tune frequency;
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Why Is There a Notch?

Detection noise Disturbances

Beam

Transverse position

@ Beam response is resonant at
the tune frequency;

@ Attenuation of detection noise
by the feedback is proportional

W to the loop gain;
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Why Is There a Notch?

@ Beam response is resonant at
the tune frequency;
Detection noise Disturbances @ Attenuation of detection noise
by the feedback is proportional
Beam to the loop gain;
W @ Transfer gain from noise to the
feedback input is #(w)

Transverse position
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Why Is There a Notch?

@ Beam response is resonant at
the tune frequency;
Detection noise Disturbances @ Attenuation of detection noise
by the feedback is proportional
Beam to the loop gain;
W @ Transfer gain from noise to the
feedback input is ﬁ(w)

@ Maximum attenuation at the
resonance, thus a notch.

Transverse position
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Bunch-by-bunch Tunes in DA®NE

DAFNE e” bunch 30 horizontal spectrum, 600 mA, 4-apr-2008

Spectral density (dB)
) \

™ \ MWM
u
[——Dpaig]
0 100 200 300 400 500 600 700 800 900

Frequency (kHz)

(Dimtel)

@ Start from computing bunch

spectrum;
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Bunch-by-bunch Tunes in DA®NE

DAFNE e” bunch 30 horizontal spectrum, 600 mA, 4-apr-2008

@ Start from computing bunch
spectrum;

W MW @ Fit model beam/feedback response to

the spectrum;
\

" ——Data
——Fit
[ 100 200 300 400 500 600 700 800 900
Frequency (kHz)

4
3

Spectral density (dB)
) \
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Frequency (kHz)

Bunch-by-bunch Tunes in DA®NE

DAFNE e" bunch-by-bunch horizontal frequency, 600 mA, 4-apr-2008

/N

@ Start from computing bunch

z? A

spectrum;

@ Fit model beam/feedback response to
the spectrum;

@ Repeat for all filled bunches;

7
/
e

40 60
Bunch number
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Bunch-by-bunch Tunes in DA®NE

DAFNE e* bunch tune, 600 MA, 4-apr

@ Start from computing bunch
spectrum;

@ Fit model beam/feedback response to
the spectrum;

@ Repeat for all filled bunches;
@ Convert to fractional tune.
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Bunch-by-bunch Tunes in DA®NE

DAFNE e* bunch tune, 600 MA, 4-apr

@ Start from computing bunch
spectrum;

@ Fit model beam/feedback response to
the spectrum;

@ Repeat for all filled bunches;
@ Convert to fractional tune.

@ Completely parasitic measurement of
bunch-by-bunch tunes.
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Using Beam to Measure Impedances

|
a
=)

-1001

Growth rate (s")

-150-

Growth rate 158.2 s", baseline 174.6 s~
T T T T

@ Advanced Photon Source at
Argonne National Laboratory;

@ Longitudinal instabilities driven
by parasitic higher-order modes

—20078

2240

80

82

84 86
Temperature (°F)

88

Center 82.6 °F, bandwidth 2.1°F, { | 2.224 kHz
T T

90

2235
_2230f

<. 2225

n
N
o
=3

Frequency (Hz,

2215

2210

220%8

80

82

(Dimtel)

84 86
Temperature (°F)

88

90

92

in RF cavities;
@ Use cavity temperature to scan
the impedance across a
synchrotron sideband:
» Mode 36;
92
Feedback CSS-SCVC 52/61



Using Beam to Measure Impedances

1

Growth rate 48.6 s™', baseline 193.5 5~
T T T T

-140
-1501
—;7150—
g | @ Advanced Photon Source at
W Argonne National Laboratory;
—te0 @ Longitudinal instabilities driven
B e ———— py paraS|t'|c.: higher-order modes
Temperature () in RF cavities;
- Center 90.0 °F, bandwidlhzv‘S“F, fo 2.‘225 kHz ) Use CaVIty temperature to scan
the impedance across a
22291 .
synchrotron sideband:
£ » Mode 36;
= » Mode 144;
£ 2006
22251
222“78 Bb 8‘2 T 54 . 8‘?F) 8‘8 50 92
emperature
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Using Beam to Measure Impedances

™

Growth rate

)

N
N
N
@

Frequency (Hz,

1

-130

—140F

-1501

-160

-1701

-1801

-1901

Growth rate 56.7 s, baseline 194.3 s~
T T T T

@ Advanced Photon Source at
Argonne National Laboratory;

@ Longitudinal instabilities driven
by parasitic higher-order modes

—20078

2232

22301

o
N
N
o

N
IN]
N
R

2222

80 82

84 86 88 90
Temperature (°F)

Center 88.3 °F, bandwidth 2.0°F, { | 2.226 kHz
T T

222%

8

80 82

(Dimtel)

84 86 88 90
Temperature (°F)

in RF cavities;
@ Use cavity temperature to scan
the impedance across a
synchrotron sideband:
» Mode 36;
» Mode 144;
» Mode 146.
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Measurement Approach

[m] IGp12: SB waveforms [=)[a)(x]
200 Bunch signal ol Magnitude
200 202
¢ o 303
N 0 Nﬁl\.’_ B a0
T -100 -
200 50
-300 60 T
0 10 20 30 40 50 2 30 32 31 36 38
Time (ms) Frequency (kHz)

Spectrum

Transfer function |

oFF_|

32768 [ |
32768 [ |

o

Phase

R R e e e B
30 32 34 36 38
Frequency (kHz)

SINGLE |

33.39kHz | -14.8dB  133.9 deg

(Dimtel)

Feedback

@ Single-bunch
acquisition engine
captures 96k samples
for one bunch together
with excitation signal;




Measurement Approach

[m] IGp12: SB waveforms [BIEIES

ID-TGPF:Z:58 Tweze | [exir |

Magnitude
200 Bunch signal T g

200 izui o SmglG-bUﬂCh

¢ w :3“: aCQUISItlon englne
b [ captures 96k samples

@a

L for one bunch together
e = with excitation signal;

Transfer function |

sl .- @ From excitation and
[z |

= o | V) response S|gnaI§,
g frequency domain
transfer function can be
i estimated.

u]
]
I
ul
it
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A Few Examples from Taiwan Light Source

@ Time-domain response,
horizontal, open loop

x*i_(counts)

b

110
0

I I I I I I I
5 10 15 20 25 30 35 40
Time (ms)
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A Few Examples from Taiwan Light Source

Horizontal plane, bunch 50, standard fill at 50 mA

-20 T T T T T T
—— Open loop
-30 Closed Ioop i
g—mf q
Tl i @ Time-domain response,
[ o S N N S T O horizontal, open loop
748 749 750 751 752 753 754 755 756 757 758 .
Freauency (kH2) @ Frequency domain
150 e transfer function
100k | » Horizontal
g 501 B
=] |

_50 | | | | | | | | .
748 749 750 751 752 753 754 755 756 757 758
Frequency (kHz)
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A Few Examples from Taiwan Light Source

Vertical plane, bunch 99, standard fill at 50 mA
T T T

-20 T
—— Open loop
a0l Closed loop
g—‘tof J
- ] @ Time-domain response,
o ‘ ‘ ‘ ‘ ‘ ‘ ‘ horizontal, open loop
443 444 445 446 447 448 449 450 451 .
Freauency (o) @ Frequency domain
50 ‘ ‘ ‘ ‘ ‘ ‘ ‘ transfer function
T : ] » Horizontal
g -sor 7 » Vertical
T -100- R
-150 7
-200 L L L L L L .
443 444 445 446 447 448 449 450 451

Frequency (kHz)
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A Few Examples from Taiwan Light Source

[H| (dB)

O H (deg)

Longitudinal plane, bunch 50, standard fill at 50 mA
T T T

—— Open loop
Closed loop : +

29 30 31 35 36 37

32 33 34
Frequency (kHz)

; ; ;
29 30 31 32 33 34 35 36 37 38
Frequency (kHz)

(Dimtel) Feedback

@ Time-domain response,
horizontal, open loop

@ Frequency domain
transfer function

» Horizontal
» Vertical
» Longitudinal

CSS-SCVC 54 /61



Single Bunch Transfer Function at ESRF

Beam Transfer Function

] @ Turn off feedback for bunch 40;

@ Apply swept sinusoidal
excitation;

@ Measure beam transfer
function;

Magnitude (dB)
%

60

65

70 H H H H H H
120 125 130 135 140 145 150 155
Frequency (kHz)

100

Phase (deg)
g

-100

-150

200 H H H H H H
120 125 130 135 140 145 150 155
Frequency (kHz)
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Single Bunch Transfer Function at ESRF

Center frequency=136.01 kHz, 7=0.1 ms

] @ Turn off feedback for bunch 40;
g’“’ . @ Apply swept sinusoidal
] excitation;
T ‘ | @ Measure beam transfer

] function;

B ey ™= @ A simple-minded fit of a
resonant response;

Phase (deg)
g

H H H H H H
120 125 130 135 140 145 150 155
Frequency (kHz)
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Single Bunch Transfer Function at ESRF

Center frequency=136.09 kHz, 1=0.5 ms

] @ Turn off feedback for bunch 40;
e ] @ Apply swept sinusoidal
] excitation;
= o ] @ Measure beam transfer

| function;

o e ™ @ A simple-minded fit of a
resonant response;

Af=[-1.5 1.7] KHz; ©=[0.3 0.1] ms

@ Fit a linear combination of 3
] resonances;
oL

Phase (deg)
g

-100[

-150

_200 L L L L L L
120 125 130 135 140 145 150 155

Frequency (kHz)
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Single Bunch Transfer Function at ESRF

Center frequency=136.08 kHz, 1=0.6 ms

] @ Turn off feedback for bunch 40;
e ] @ Apply swept sinusoidal
] excitation;
= o ] @ Measure beam transfer

| function;

B ey ™= @ A simple-minded fit of a
resonant response;

@ Fit a linear combination of 3
1 resonances;

i ' ] @ 5 resonances;

Af=[-1.8 1.8 -3.6 3.3] kHz; t=[0.5 0.4 0.5 0.2] ms

Phase (deg)
g

!

=]

3
T

-150

_200 L L L L L L
120 125 130 135 140 145 150 155

Frequency (kHz)
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Single Bunch Transfer Function at ESRF

Center frequency=135.97 kHz, 1=0.7 ms

] @ Turn off feedback for bunch 40;
e ] @ Apply swept sinusoidal
] excitation;
= o ] @ Measure beam transfer

| function;

B ey ™= @ A simple-minded fit of a
resonant response;

@ Fit a linear combination of 3
1 resonances;

i ' ] @ 5 resonances;
| | @ 7 resonances;

Af=[-1.8 1.9 -3.7 3.6 5.7 5.4] kHz; t=[0.7 0.6 0.5 0.6 0.3 0.2] ms

Phase (deg)
g

!

=]

3
T

-150

_200 L L L L L L
120 125 130 135 140 145 150 155

Frequency (kHz)
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Single Bunch Transfer Function at ESRF

Center frequency=135.96 kHz, 1=0.8 ms

] @ Turn off feedback for bunch 40;
g | @ Apply swept sinusoidal
] excitation;
= o ] @ Measure beam transfer

| function;

Pom e e e w9 A simple-minded fit of a
resonant response;

@ Fit a linear combination of 3
1 resonances;

i ' ] @ 5 resonances;
| | @ 7 resonances;
@ 9 resonances;

Af=[-1.81.9-3.7 3.6 -5.8 5.5 -7.8 7.3] kHz; 1=[0.7 0.7 0.7 0.5 0.4 0.5 0.2 0.2] ms

Phase (deg)
g

!

=]

3
T

-150

_200 L L L L L L
120 125 130 135 140 145 150 155

Frequency (kHz)
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Single Bunch Transfer Function at ESRF

Center frequency=136.00 kHz, 7=0.7 ms

] @ Turn off feedback for bunch 40;
ol @ Apply swept sinusoidal
excitation;

e @ Measure beam transfer
function;

Pom e e e w9 A simple-minded fit of a
resonant response;

Fit a linear combination of 3
1 resonances;

@ 5resonances;
@ 7 resonances;
@ 9 resonances;
@ 11 resonances.

Af=[-1.8 1.8 -3.7 3.5 5.9 5.4 ~7.9 7.4] kHz; 7=[0.9 0.6 0.7 0.6 0.4 0.5 0.2 0.7 ms

Phase (deg)
g

-100[

-150

_200 L L L L L L
120 125 130 135 140 145 150 155

Frequency (kHz)
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Summary

@ For stable operation of modern storage rings, control of
coupled-bunch instabilities is a must;
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Summary

@ For stable operation of modern storage rings, control of
coupled-bunch instabilities is a must;

@ Bunch-by-bunch feedback is a powerful and well understood tool
for such control;
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Summary

@ For stable operation of modern storage rings, control of
coupled-bunch instabilities is a must;

@ Bunch-by-bunch feedback is a powerful and well understood tool
for such control;

@ Good understanding of beam dynamics and feedback control is
needed to successfully operate these systems;
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Summary

@ For stable operation of modern storage rings, control of
coupled-bunch instabilities is a must;

@ Bunch-by-bunch feedback is a powerful and well understood tool
for such control;

@ Good understanding of beam dynamics and feedback control is
needed to successfully operate these systems;

@ Digital signal processing techniques in modern bunch-by-bunch
feedback systems enable a wealth of beam and system
diagnostics.
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Open Loop Transfer Function

Setpoint and excitation Disturbances @ Measured from setpoint to the
R 1 cavity probe;
Error RF

cavity
Cavity field probe
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Open Loop Transfer Function

@ Measured from setpoint to the

Setpoint and excitation Disturbances
N cavity probe;

S cavity @ Feedback block in open loop has
- Cavity field protj no dynamics, just gain and phase

shift;
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Open Loop Transfer Function

@ Measured from setpoint to the

) cavity probe;
3. @ Feedback block in open loop has
97 A S S S S e, 3 no dynamics, just gain and phase
eyt () shift:
g @ Open loop cavity response;

T7250 200 -150 100 -50 0 50
Frequency offset (kHz)
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Open Loop Transfer Function

@ Measured from setpoint to the
cavity probe;

@ Feedback block in open loop has
no dynamics, just gain and phase

;rs;zuency‘;u“sel(lfgz) ‘60 |éo 2‘;0 20 Shlft,

e =] @ Open loop cavity response;

@ Fit resonator model to extract
gain, loaded Q, detuning, delay,

IR phase shift at w;y;

Gain = 0.2, Q = 15739.5, (W, - w,) = 0.55 kHz

Gain (dB)

72250 200 150 -100

a

Phase (degrees)
3
- 8

L
3
s

250 200 -150 -100 -50 0 50
Frequency offset (kHz)
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Open Loop Transfer Function

@ Measured from setpoint to the
cavity probe;

@ Feedback block in open loop has
no dynamics, just gain and phase

00 150 200 250 Shlft,

= @ Open loop cavity response;

@ Fit resonator model to extract
gain, loaded Q, detuning, delay,

IR phase shift at w;y;

@ Faster than expected gain roll-off
above the resonance.

Gain = 0.2, Q = 15739.5, (W, - w,) = 0.55 kHz

Gain (dB)

72250 200 150 -100

50 0 50
Frequency offset (kHz)

=750.834 ns, 0 = 359.6 deg
T T T T

a

Phase (degrees)
3
- 8

L
3
s

250 200 -150 -100 -50 0 50
Frequency offset (kHz)
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Wideband Open Loop Transfer Function

@ Wider sweep reveals a parasitic
. mode at 2.8 MHz above the 7
57 S ] mode;

4000 -3000 -2000 -1000 0 1000 2000 3000 4000
Frequency offset (kHz)

N
8
s

Phase (degrees)
Lok
s

s
1
8

1000 2000 3000 4000

“T4000 -3000 -2000 -1000 0
Frequency offset (kHz)
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Wideband Open Loop Transfer Function

@ Wider sweep reveals a parasitic

Gain -13.7 dB Gain -12.6 dB
s ; mode at 2.8 MHz above the n
S . mode;

- ; > @ Negative feedback for the = mode
D oty is positive for the parasitic mode;

2400 -200 20
Frequency offset (kHz) Frequency offset (kHz)
Phase -0.4 deg Phase ~121.0 deg
7 100 ? 0
@ I
4 g
g o < -100
8 2
8 g
& -100 & -200
TS400 200 0 200 400 2600 2800 3000 3200

Frequency offset (kHz) Frequency offset (kHz)
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Wideband Open Loop Transfer Function

@ Wider sweep reveals a parasitic

N o mode at 2.8 MHz above the 7
o mode;

; @ Negative feedback for the = mode
-s,t‘zgu;ng‘iz.jlfag ..,5“ is positive for the parasitic mode;
. o @ This positive feedback limits direct

i 5o loop gain;

TS400 200 0 200 400 2600 2800 3000 3200
Frequency offset (kHz) Frequency offset (kHz)
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Wideband Open Loop Transfer Function

@ Wider sweep reveals a parasitic

. o mode at 2.8 MHz above the =
% L mode;

@ Negative feedback for the = mode
O ey otset i ey oot b is positive for the parasitic mode;
. o @ This positive feedback limits direct

£, . loop gain;
S @ The simplest way around the
I - issue is to use digital delay to
equalize the modal phase shifts
(230 ns).
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Proportional Loop Gain and Delay

Gain margin 12.3 dB at 2874.4 kHz

/ @ Set up minimum delay and equalized
gl \\ [ transfer functions for identical 3 dB
W closed-loop peaking.

e | » Minimum delay: peak gain at RF is
2l —9.2 dB, gain margin 12.3 dB

1000 -500 0 500 1000 1500 2000 2500 3000 3500 4000
Frequency offset (kHz)

Gain (dB)
P
—

: N \
N \
AL\ \ \

+ GM
“Zio00 -500 0 500 1000 1500 2000 2500 3000 3500 4000
Frequency offset (kHz)
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Proportional Loop Gain and Delay

ain margin 3105.9 kHz

N et
I

1000 -500 0 500 1000 1500 2000 2500 3000 3500 4000
Frequency offset (kHz)

Phase margin 88.5" at 2904.3 kHz

\ \ \

\ \ \
g [\ \ \
5 L\ \ \
FAVAIRLAVERY AR
e \

“Zio00 -500 0 500 1000 1500 2000 2500 3000 3500 4000
Frequency offset (kHz)

(Dimtel)

@ Set up minimum delay and equalized
transfer functions for identical 3 dB
closed-loop peaking.

» Minimum delay: peak gain at RF is
—9.2 dB, gain margin 12.3 dB

» Equalized: peak gain at RF is
+8 dB, gain margin 11.8 dB, phase
margin 88 degrees
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Proportional Loop Gain and Delay

ain margin 3105.9 kHz

@*203'/ \\ M/ \\q 1
]
- U
—TF
1 om
* pu

1000 -500 0 500 1000 1500 2000 2500 3000 3500 4000
Frequency offset (kHz)

Phase margin 88.5" at 2904.3 kHz

\ \ \
\ \ \
\ \ \
\ \
o\ T
D_TF \

-15011 + GM
x PM

“Zio00 -500 0 500 1000 1500 2000 2500 3000 3500 4000
Frequency offset (kHz)

Gain (dB)

_/”d

(Dimtel)

@ Set up minimum delay and equalized
transfer functions for identical 3 dB
closed-loop peaking.

» Minimum delay: peak gain at RF is
—9.2 dB, gain margin 12.3 dB

» Equalized: peak gain at RF is
+8 dB, gain margin 11.8 dB, phase
margin 88 degrees

@ More sophisticated parasitic mode
suppression methods can improve
the performance only slightly, around
2-3 dB.
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Closed Loop Transfer Function

Setpoint and excitation Disturbances

@ Measured from setpoint to the
Error s error signal;

cavity
Cavity field probe

+
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Closed Loop Transfer Function

Setpoint and excitation Disturbances

@ Measured from setpoint to the
Error . error signal;
vit) I
d i W @ Quantifies closed-loop
Cavity field probe . . .
disturbance rejection vs.
frequency offset from frg;

+
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Closed Loop Transfer Function

@ Measured from setpoint to the
error signal;

@ Quantifies closed-loop
disturbance rejection vs.
frequency offset from frg;

@ Proportional and integrator loops
produce high rejection at low
frequencies;
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Closed Loop Transfer Function

@ Measured from setpoint to the
error signal;

@ Quantifies closed-loop
disturbance rejection vs.
frequency offset from frg;

@ Proportional and integrator loops
produce high rejection at low

frequencies;

@ Magnitude on log-log scale, field
setpoint of 1 MV.
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