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Motivation

Thresholds
Machine Inom/Ith
ALS 500/50
HLS 300/5
ANKA 200/10

Applications of charged-particle circular
accelerators:

I Colliders
I Synchrotron light sources

In both of these applications beam stability is
crucial for achieving design performance
(collider luminosity, light source brilliance);
Coupled-bunch instabilities cause beam loss
or reduce performance;
In the past, machines were designed to
operate below the instability threshold;
Modern storage rings often operate far
above the threshold level and require
feedback stabilization.
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What is a Storage Ring

Vacuum chamberNominal orbit

Guide field element

RF cavity

Injection

z

x

Particles are accelerated to
desired energy and injected
into a storage ring;
Vacuum chamber around a
closed trajectory;
Magnetic guide field elements
deflect charged particles to
follow the nominal orbit;
Charged particles under
acceleration radiate, leading to
energy loss;

I Angular acceleration only!

Energy lost in one turn is
replenished in one or more RF
cavities.

(Dimtel) Feedback CSS-SCVC 6 / 61



What is a Storage Ring

Vacuum chamberNominal orbit

Guide field element

RF cavity

Injection

z

x

Particles are accelerated to
desired energy and injected
into a storage ring;
Vacuum chamber around a
closed trajectory;
Magnetic guide field elements
deflect charged particles to
follow the nominal orbit;
Charged particles under
acceleration radiate, leading to
energy loss;

I Angular acceleration only!

Energy lost in one turn is
replenished in one or more RF
cavities.

(Dimtel) Feedback CSS-SCVC 6 / 61



What is a Storage Ring

Vacuum chamberNominal orbit

Guide field element

RF cavity

Injection

z

x

Particles are accelerated to
desired energy and injected
into a storage ring;
Vacuum chamber around a
closed trajectory;
Magnetic guide field elements
deflect charged particles to
follow the nominal orbit;
Charged particles under
acceleration radiate, leading to
energy loss;

I Angular acceleration only!

Energy lost in one turn is
replenished in one or more RF
cavities.

(Dimtel) Feedback CSS-SCVC 6 / 61



What is a Storage Ring

Vacuum chamberNominal orbit

Guide field element

RF cavity

Injection

z

x

Particles are accelerated to
desired energy and injected
into a storage ring;
Vacuum chamber around a
closed trajectory;
Magnetic guide field elements
deflect charged particles to
follow the nominal orbit;
Charged particles under
acceleration radiate, leading to
energy loss;

I Angular acceleration only!

Energy lost in one turn is
replenished in one or more RF
cavities.

(Dimtel) Feedback CSS-SCVC 6 / 61



What is a Storage Ring

Vacuum chamberNominal orbit

Guide field element

RF cavity

Injection

z

x

Particles are accelerated to
desired energy and injected
into a storage ring;
Vacuum chamber around a
closed trajectory;
Magnetic guide field elements
deflect charged particles to
follow the nominal orbit;
Charged particles under
acceleration radiate, leading to
energy loss;

I Angular acceleration only!

Energy lost in one turn is
replenished in one or more RF
cavities.

(Dimtel) Feedback CSS-SCVC 6 / 61



RF and Longitudinal Focusing

U0

VRF

TRF

τs

Trev

t

Synchronous particles

Periodic RF voltage restores the energy lost via radiation;
Synchronous particle gains exactly the energy lost in one turn;
Particles above nominal energy take a longer path — positive
momentum compaction;
RF voltage slope creates a potential well (longitudinal focusing);
Integer ratio Trev/TRF (harmonic number) is the number of stable
RF buckets where bunches of charged particles can be stored.
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Longitudinal Equation of Motion
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Impulse response Particles can oscillate in the
longitudinal potential well;
Particle motion near synchronous
position can be described by the
following equation:
τ̈ + 2dr τ̇ + ω2

sτ = 0
I dr is the radiation damping rate;
I ωs is the synchrotron frequency;

This equation describes a
damped harmonic oscillator;
When many particles are stored in
one RF bucket, the same equation
describes center-of-mass motion.
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Transverse Motion

Betatron oscillation

Nominal orbit

In addition to dipoles, magnetic lattice of
a storage ring includes focusing
elements;
Similarly to longitudinal plane, horizontal
and vertical motions at low amplitudes
behave as damped harmonic oscillators;
One major difference between
longitudinal and transverse motion:

I Synchrotron period is 50–1000
revolutions;

I Transversely, particles execute multiple
betatron cycles in one revolution.

When betatron motion is observed at a
single point in the ring, it is aliased;
Only fractional part of betatron frequency
(tune) is observed.

(Dimtel) Feedback CSS-SCVC 9 / 61



Transverse Motion

Betatron oscillation

Nominal orbit

In addition to dipoles, magnetic lattice of
a storage ring includes focusing
elements;
Similarly to longitudinal plane, horizontal
and vertical motions at low amplitudes
behave as damped harmonic oscillators;
One major difference between
longitudinal and transverse motion:

I Synchrotron period is 50–1000
revolutions;

I Transversely, particles execute multiple
betatron cycles in one revolution.

When betatron motion is observed at a
single point in the ring, it is aliased;
Only fractional part of betatron frequency
(tune) is observed.

(Dimtel) Feedback CSS-SCVC 9 / 61



Transverse Motion

Betatron oscillation

Nominal orbit

In addition to dipoles, magnetic lattice of
a storage ring includes focusing
elements;
Similarly to longitudinal plane, horizontal
and vertical motions at low amplitudes
behave as damped harmonic oscillators;
One major difference between
longitudinal and transverse motion:

I Synchrotron period is 50–1000
revolutions;

I Transversely, particles execute multiple
betatron cycles in one revolution.

When betatron motion is observed at a
single point in the ring, it is aliased;
Only fractional part of betatron frequency
(tune) is observed.

(Dimtel) Feedback CSS-SCVC 9 / 61



Transverse Motion

Betatron oscillation

Nominal orbit

0 2 4 6 8 10 12
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Turns

T
ra

n
s
v
e
rs

e
 p

o
s
it
io

n

In addition to dipoles, magnetic lattice of
a storage ring includes focusing
elements;
Similarly to longitudinal plane, horizontal
and vertical motions at low amplitudes
behave as damped harmonic oscillators;
One major difference between
longitudinal and transverse motion:

I Synchrotron period is 50–1000
revolutions;

I Transversely, particles execute multiple
betatron cycles in one revolution.

When betatron motion is observed at a
single point in the ring, it is aliased;
Only fractional part of betatron frequency
(tune) is observed.

(Dimtel) Feedback CSS-SCVC 9 / 61



Transverse Motion

Betatron oscillation

Nominal orbit

0 2 4 6 8 10 12
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Turns

T
ra

n
s
v
e
rs

e
 p

o
s
it
io

n

In addition to dipoles, magnetic lattice of
a storage ring includes focusing
elements;
Similarly to longitudinal plane, horizontal
and vertical motions at low amplitudes
behave as damped harmonic oscillators;
One major difference between
longitudinal and transverse motion:

I Synchrotron period is 50–1000
revolutions;

I Transversely, particles execute multiple
betatron cycles in one revolution.

When betatron motion is observed at a
single point in the ring, it is aliased;
Only fractional part of betatron frequency
(tune) is observed.

(Dimtel) Feedback CSS-SCVC 9 / 61



Beam Signals in Time and Frequency Domains

0

0 t−Trev Trev

ωrev
ω

Single particle in a ring has time domain
signal i(t) =

∑∞
n=−∞ δ(t − nTrev)

Frequency domain:
I(ω) = ωrev

∑∞
p=−∞ δ(ω − pωrev)

Placing identical particles in all RF
buckets:

I i(t) =
∑∞

n=−∞ δ(t − nTRF)
I I(ω) = ωRF

∑∞
p=−∞ δ(ω − pωRF)

Assumption of infinitely short bunches
produces unphysically wide spectrum;
For Gaussian bunch with RMS bunch
length στ :
I(ω) = QωRFe−ω

2σ2
τ/2 ∑∞

p=−∞ δ(ω− pωRF)
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Synchrotron and Betatron Oscillation

Synchrotron oscillation is a phase modulation of beam signal;
At low amplitudes of motion, synchrotron sidebands appear
around the harmonics of the revolution frequency;
At larger amplitudes of motion (higher phase modulation index),
harmonics of synchrotron frequency become significant;
Signal repeats at multiples of RF frequency, with increasing phase
modulation index, i.e. larger synchrotron harmonics;
Betatron oscillation causes the beam to pass closer to or farther
from the detector;
Amplitude modulation;
Aliased betatron frequency sidebands of the revolution harmonics;
For rigid bunch centroid motion, full information appears in fRF/2
band above or below each RF harmonic.
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Metrology Light Source

Parameters
Parameter Value
Circumference 48 m
RF frequency 500 MHz
Harmonic number 80
Energy 105–629 MeV
Design current 100 mA

Application: Synchrotron Light Source,
Primary Radiation Standard.
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Hefei Light Source

Image courtesy of USTC NSRL

Parameters
Parameter Value
Circumference 66 m
RF frequency 204 MHz
Harmonic number 45
Energy 800 MeV
Design current 300 mA

Application: Synchrotron Light Source.
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Australian Synchrotron

Image courtesy of Australian Synchrotron

Parameters
Parameter Value
Circumference 216 m
RF frequency 500 MHz
Harmonic number 360
Energy 3 GeV
Design current 200 mA

Application: Synchrotron Light Source.

(Dimtel) Feedback CSS-SCVC 15 / 61



MAX IV 3 GeV

Image from Lund University Media Bank

Parameters
Parameter Value
Circumference 528 m
RF frequency 100 MHz
Harmonic number 176
Energy 3 GeV
Design current 500 mA

Application: Synchrotron Light Source.
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KEK B-Factory

Image credit: KEK

Parameters
Parameter Value
Circumference 3016 m
RF frequency 509 MHz
Harmonic number 5120
Energy 4/7 GeV
Design current 3.6/2.6 A

Application: Two ring e+/e− collider.
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Coupled-bunch Instabilities

Resonant structure

Vacuum chamber

nn+1n+2

bunch n bunch n+2n+1bunch

Time

Bunch passing through a resonant
structure excites a wakefield which is
sampled by the following bunches —
a coupling mechanism;
In practice the wakefields have much
longer damping times than illustrated
here;
Longitudinal bunch oscillation→
phase modulation of the wakefield→
slope of the wake voltage sampled by
the following bunches determines the
coupling.
For certain combinations of wakefield
amplitudes and frequencies the
overall system becomes unstable.
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Coupled-bunch Instabilities: Eigenmodes and
Eigenvalues

A system of N bunches (coupled harmonic oscillators) has N
eigenmodes;
From symmetry considerations we find that the eigenmodes
correspond to Fourier vectors;
Mode number m describes the number of oscillation periods over
one turn;
Wakefields affect the modal eigenvalues in both real (growth rate)
and imaginary (oscillation frequency) parts;
Motion of bunch k oscillating in mode m is given by:
Ame2πkm/NeΛmt

I Am — modal amplitude;
I Λm — complex modal eigenvalue.

(Dimtel) Feedback CSS-SCVC 20 / 61



Coupled-bunch Instabilities: Eigenmodes and
Eigenvalues

A system of N bunches (coupled harmonic oscillators) has N
eigenmodes;
From symmetry considerations we find that the eigenmodes
correspond to Fourier vectors;
Mode number m describes the number of oscillation periods over
one turn;
Wakefields affect the modal eigenvalues in both real (growth rate)
and imaginary (oscillation frequency) parts;
Motion of bunch k oscillating in mode m is given by:
Ame2πkm/NeΛmt

I Am — modal amplitude;
I Λm — complex modal eigenvalue.

(Dimtel) Feedback CSS-SCVC 20 / 61



Coupled-bunch Instabilities: Eigenmodes and
Eigenvalues

A system of N bunches (coupled harmonic oscillators) has N
eigenmodes;
From symmetry considerations we find that the eigenmodes
correspond to Fourier vectors;
Mode number m describes the number of oscillation periods over
one turn;
Wakefields affect the modal eigenvalues in both real (growth rate)
and imaginary (oscillation frequency) parts;
Motion of bunch k oscillating in mode m is given by:
Ame2πkm/NeΛmt

I Am — modal amplitude;
I Λm — complex modal eigenvalue.

(Dimtel) Feedback CSS-SCVC 20 / 61



Coupled-bunch Instabilities: Eigenmodes and
Eigenvalues

A system of N bunches (coupled harmonic oscillators) has N
eigenmodes;
From symmetry considerations we find that the eigenmodes
correspond to Fourier vectors;
Mode number m describes the number of oscillation periods over
one turn;
Wakefields affect the modal eigenvalues in both real (growth rate)
and imaginary (oscillation frequency) parts;
Motion of bunch k oscillating in mode m is given by:
Ame2πkm/NeΛmt

I Am — modal amplitude;
I Λm — complex modal eigenvalue.

(Dimtel) Feedback CSS-SCVC 20 / 61



Coupled-bunch Instabilities: Eigenmodes and
Eigenvalues

A system of N bunches (coupled harmonic oscillators) has N
eigenmodes;
From symmetry considerations we find that the eigenmodes
correspond to Fourier vectors;
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Modal Oscillation Example

Harmonic number of 8;
Top plot — mode 1;
Bottom — mode 7;
All bunches oscillate at the
same amplitude and frequency,
but different phases;
Cannot distinguish modes m
and N −m (or −m) from a
single turn snapshot.
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Modal Oscillation With Damping

Same modes with damping.
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Coupled-bunch Instabilities: Eigenvalues and
Impedances

Beam interacts with wakefields (impedances in frequency domain)
at synchrotron or betatron sidebands of revolution harmonics;
Impedance functions are aliased, since they are sampled by the
beam;

Longitudinal: Λm = (−λ‖rad + iωs) +
παef 2

rf I0
E0hωs

Z ‖eff(mω0 + ωs);

Effective impedance: Z ‖eff(ω) =
∑∞

p=−∞
pωrf+ω
ωrf

Z ‖(pωrf + ω)

Transverse: Λm = (−λ⊥rad + iωβ)− cefrevI0
2ωβE0

Z⊥eff(mω0 + ωβ)

Effective impedance: Z⊥eff(ω) =
∑∞

p=−∞ Z⊥(pωrf + ω)
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Feedback Topologies

Historically, people started fighting coupled-bunch instabilities in
the frequency domain by building mode-by-mode systems;

I Driven by relatively small number of bunches in the early machines;
I Correspondingly, few modes and even fewer unstable modes.

Such systems rapidly became impractical in storage rings with
hundreds or thousands of bunches;
In the mid-1980s first time-domain systems started to appear,
performing bunch-by-bunch processing;
Progress of DSP technology in 1990s and 2000s led to the
development of programmable digital systems;
Pioneered at SLAC by Dr. John D. Fox.
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Bunch-by-bunch Feedback

Definition
In bunch-by-bunch feedback approach the actuator signal for a given
bunch depends only on the past motion of that bunch.

Controller

Beam
Kicker structure

Back−endFront−end

SensorBPM Actuator

Bunches are processed sequentially;
Correction kicks are applied one or more turns later;
Diagonal feedback — computationally efficient;
Extremely popular in storage rings — why?
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MIMO Model of Bunch-by-bunch Feedback

Feedback

Beam dynamics

H(ω)

H(ω)

H(ω)

. . .

y0

y1

yN−1

...

u0

u1

uN−1

... G(ω)

N bunch positions and feedback kicks;
Diagonal feedback matrix H(ω)I;
Invariant under coordinate transformations.
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MIMO Model of Bunch-by-bunch Feedback

Feedback

Beam dynamics

H(ω)

H(ω)

H(ω)

. . .

ŷ0

ŷ1

ŷN−1

...

û0

û1

ûN−1

... . . .

Ĝ1(ω)

Ĝ0(ω)

ĜN−1(ω)

Coordinate transformation to eigenmode basis;
N feedback loops - one per mode;
Identical feedback applied to each mode.
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Bunch-by-bunch Feedback

Controller

Beam
Kicker structure

Back−endFront−end

SensorBPM Actuator

Sensor (pickup);
Analog front-end;
Controller;
Analog back-end;
Actuator (kicker).
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Bunch-by-bunch Feedback

Controller

Beam
Kicker structure

Back−endFront−end

SensorBPM Actuator

Sensor (pickup);
Analog front-end;
Controller;
Analog back-end;
Actuator (kicker).
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Beam Position Sensor
A

C

B

D

To sense beam position we typically use
capacitive button beam position monitors
(BPMs);
Arrangement of pickups is driven by the
need to avoid synchrotron radiation fan;

I Horizontal/vertical buttons are easier to
process.

Buttons couple capacitively to the beam,
differentiating bunch current shape;
BPM signals are wideband differentiated
pulses with 100–400 ps duration;
Differentiation means sensor gain
increases with frequency.
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Bunch-by-bunch Feedback

Controller

Beam
Kicker structure

Back−endFront−end

SensorBPM Actuator

Sensor (pickup);
Analog front-end;
Controller;
Analog back-end;
Actuator (kicker).
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Bunch-by-bunch Feedback

Controller

Beam
Kicker structure

Back−endFront−end

SensorBPM Actuator

Sensor (pickup);
Analog front-end;
Controller;
Analog back-end;
Actuator (kicker).
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BPM Hybrid Network

A (180◦)

B (0◦) C (Σ)

D (∆)

A (180◦)

B (0◦) C (Σ)

D (∆)

A (180◦)

B (0◦) C (Σ)

D (∆)

A (180◦)

B (0◦) C (Σ)

D (∆)

B + C − A−D

B +D − A− C

A+B + C +D

A+B −D − C ∆Y

∆X

Σ

Q

A+ C

B +D

B −D

C −AA

C

B

D

First stage of BPM signal processing — separating X/Y/Z signals
(some of you might recognize monopulse comparator structure);
Since we are digitizing in the end, why not digitize raw signals?
For X and Y we are dealing with small differences of large signals;
If we can reject the common-mode at 20–30 dB level, that is also
the gain of low-noise amplifier we can use to improve sensitivity.
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Analog Front-end Design

D

C

B

A

BPM hybrid

F
ro

m
B
P
M

s

×

Variable
attenuator

Phase shifter

Frequency multiplier
frf

Bandpass filter

M × frf

Lowpass filter

To the ADC

MixerLNA

Front-end requirements:
I Low amplitude and phase noise;
I Wideband to ensure high isolation between neighboring bunches.

Input bandpass filter is an analog FIR filter that replicates BPM
pulse with spacing, matched to detection LO period;
Detection frequency choice:

I High frequencies for sensitivity;
I Must stay below the propagation cut-off frequency of the vacuum

chamber.

Local oscillator adjusted for amplitude (transverse) or phase
(longitudinal) detection.
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Bunch-by-bunch Feedback

Controller

Beam
Kicker structure

Back−endFront−end

SensorBPM Actuator

Sensor (pickup);
Analog front-end;
Controller;
Analog back-end;
Actuator (kicker).
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Bunch-by-bunch Feedback

Beam
Kicker structure

Back−endFront−end

SensorBPM Actuator

Controller

Sensor (pickup);
Analog front-end;
Controller;
Analog back-end;
Actuator (kicker).
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Baseband Signal Processor

ADC

Acquisition
memory

supply monitoring
Temperature and

Input

interface

Output

RF clock

DACFPGA

Fiducial

Triggers

and digital I/O
Slow analog

Control

Block diagram of a type frequently seen in accelerator context:
ADC, FPGA, and DAC;
ADC, DAC: 12–14 bit, 500–600 MSPS, 400 ps rise/fall times;
FPGA implements algorithmically simple, but computationally
intensive processing.
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Inside the FPGA

FIR filter
chain

FIR filter
chain

FIR filter
chain

FIR filter
chain

FIR filter
chain

Uneven stepping
demultiplexer

Uneven stepping
multiplexer

Holdbuffer

Bunch-by-bunch
enable & coeff

Downsampling
turn selector

Adjustable
one turn delay

Three tap
kick shaper FIR

Drive signal with bunch-by-bunch enable

To the DACFrom the ADC

Multiple filter chains to match FPGA processing rate to the bunch
crossing rate;
Uneven stepping scheme — use groups of n and n + 1 bunches to
make sure signal from a given bunch ends up in the same filter
chain on consecutive turns;
Bunch-by-bunch excitation and feedback enables;
Back-end compensation.
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Feedback Filter
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Gain at the tune: 20.4 dB
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Phase at the tune: −96.3 degrees

Requirements:
I Adjustable phase shift at the tune

frequency;
I DC rejection to get rid of constant

orbit offsets;
I Low group delay.

Filter design approach — sample
one period of a sine wave;

I Group delay is 1
2 of oscillation

period;
I Nicely parameterized, often close

to optimal.

More sophisticated design methods
are required when large
perturbations are present or with
variable beam dynamics, etc.
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Bunch-by-bunch Feedback

Controller

Beam
Kicker structure

Back−endFront−end

SensorBPM Actuator

Sensor (pickup);
Analog front-end;
Controller;
Analog back-end;
Actuator (kicker).
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Bunch-by-bunch Feedback

Controller

Beam
Kicker structure

Back−endFront−end

SensorBPM Actuator

Sensor (pickup);
Analog front-end;
Controller;
Analog back-end;
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Analog Back-end

amplifier
To the power

Bessel filterAmplifierVariable attenuatorMixer

×

2× multiplier

Step recovery diode
frequency multiplier

From the DAC

Digital control
interface

frf

500 MHz 2× frf
1000 MHz

CF = 1250 MHz

Longitudinal kickers are usually built as highly damped (low Q,
wideband) cavities at 1–1.5 GHz;
Baseband kick must be upconverted to the right frequency to drive
these;
Phase linearity is critical to maintain the same feedback for
different modes;
Constant group-delay filters are used to create single-sideband
modulation to efficiently drive kicker cavity.
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different modes;
Constant group-delay filters are used to create single-sideband
modulation to efficiently drive kicker cavity.
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Bunch-by-bunch Feedback

Controller

Beam
Kicker structure

Back−endFront−end

SensorBPM Actuator

Sensor (pickup);
Analog front-end;
Controller;
Analog back-end;
Actuator (kicker).
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Transverse Kicker

50 Ω striplines driven Differentially;
Counter-propagating beam and kick signals;
For 2 ns bunch spacing maximum stripline length is 1 ns:

I Fill time of 1 ns;
I Beam propagation time of 1 ns;
I Longer striplines will couple the kick to neighboring bunches.

Shorter striplines do better in frequency domain, have smaller
kick.
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How Does One Characterize an Unstable System?

Standard methods of characterization:
I Frequency domain — transfer function;
I Time domain — step/pulse response.

These methods fail for unstable beam;
In 1990s our group at SLAC developed so-called transient
diagnostics:

I Upon some trigger, turn off feedback and start recording beam
motion;

I Unstable motion grows from ever-present noise-floor level
excitation;

I After an adjustable open-loop time period, turn feedback on;

Resulting data set captures open-loop growth of the fastest
unstable modes and closed-loop damping;
Used to characterize driving terms (impedances) and feedback
performance, optimize tuning.
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Grow/damp Measurements from ESRF

Grow/damp at 100 mA, 8 ms
growth time;
Only resistive wall modes;
Damping rates non-uniform —
low frequency response of the
amplifier?
Fits look very clean, textbook
exponential transients;
Filled to 200 mA, not limited by
instabilities;
Growth time too long, when
feedback turns on there is not
enough gain to damp the
motion.
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Parasitic Tune Measurement

Transverse feedback in
DAΦNE operating in the X
plane;
Averaged beam spectrum
(lower right) shows a notch;
This notch is a key to the
parasitic tune measurement
capability.

(Dimtel) Feedback CSS-SCVC 49 / 61



Parasitic Tune Measurement

Transverse feedback in
DAΦNE operating in the X
plane;
Averaged beam spectrum
(lower right) shows a notch;
This notch is a key to the
parasitic tune measurement
capability.

(Dimtel) Feedback CSS-SCVC 49 / 61



Parasitic Tune Measurement

Transverse feedback in
DAΦNE operating in the X
plane;
Averaged beam spectrum
(lower right) shows a notch;
This notch is a key to the
parasitic tune measurement
capability.

(Dimtel) Feedback CSS-SCVC 49 / 61



Why Is There a Notch?

∑ Error

Transverse position

DisturbancesDetection noise

Feedback Beam

Beam response is resonant at
the tune frequency;
Attenuation of detection noise
by the feedback is proportional
to the loop gain;
Transfer gain from noise to the
feedback input is 1

1+L(ω)

Maximum attenuation at the
resonance, thus a notch.
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Bunch-by-bunch Tunes in DAΦNE
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DAFNE e+ bunch 30 horizontal spectrum, 600 mA, 4−apr−2008

 

 

Data

Start from computing bunch
spectrum;
Fit model beam/feedback response to
the spectrum;
Repeat for all filled bunches;
Convert to fractional tune.
Completely parasitic measurement of
bunch-by-bunch tunes.
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Start from computing bunch
spectrum;
Fit model beam/feedback response to
the spectrum;
Repeat for all filled bunches;
Convert to fractional tune.
Completely parasitic measurement of
bunch-by-bunch tunes.
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Using Beam to Measure Impedances
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Advanced Photon Source at
Argonne National Laboratory;
Longitudinal instabilities driven
by parasitic higher-order modes
in RF cavities;
Use cavity temperature to scan
the impedance across a
synchrotron sideband:

I Mode 36;
I Mode 144;
I Mode 146.
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Measurement Approach

Single-bunch
acquisition engine
captures 96k samples
for one bunch together
with excitation signal;
From excitation and
response signals,
frequency domain
transfer function can be
estimated.
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A Few Examples from Taiwan Light Source
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A Few Examples from Taiwan Light Source
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A Few Examples from Taiwan Light Source
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Single Bunch Transfer Function at ESRF
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Turn off feedback for bunch 40;
Apply swept sinusoidal
excitation;
Measure beam transfer
function;
A simple-minded fit of a
resonant response;
Fit a linear combination of 3
resonances;
5 resonances;
7 resonances;
9 resonances;
11 resonances.
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Turn off feedback for bunch 40;
Apply swept sinusoidal
excitation;
Measure beam transfer
function;
A simple-minded fit of a
resonant response;
Fit a linear combination of 3
resonances;
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Summary

For stable operation of modern storage rings, control of
coupled-bunch instabilities is a must;
Bunch-by-bunch feedback is a powerful and well understood tool
for such control;
Good understanding of beam dynamics and feedback control is
needed to successfully operate these systems;
Digital signal processing techniques in modern bunch-by-bunch
feedback systems enable a wealth of beam and system
diagnostics.
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Open Loop Transfer Function

∑ Error
Feedback

RF
cavity

DisturbancesSetpoint and excitation

Cavity field probe

Measured from setpoint to the
cavity probe;
Feedback block in open loop has
no dynamics, just gain and phase
shift;
Open loop cavity response;
Fit resonator model to extract
gain, loaded Q, detuning, delay,
phase shift at ωrf;
Faster than expected gain roll-off
above the resonance.
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Wideband Open Loop Transfer Function
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Wider sweep reveals a parasitic
mode at 2.8 MHz above the π
mode;
Negative feedback for the π mode
is positive for the parasitic mode;
This positive feedback limits direct
loop gain;
The simplest way around the
issue is to use digital delay to
equalize the modal phase shifts
(230 ns).
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Proportional Loop Gain and Delay
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Set up minimum delay and equalized
transfer functions for identical 3 dB
closed-loop peaking.

I Minimum delay: peak gain at RF is
−9.2 dB, gain margin 12.3 dB

I Equalized: peak gain at RF is
+8 dB, gain margin 11.8 dB, phase
margin 88 degrees

More sophisticated parasitic mode
suppression methods can improve
the performance only slightly, around
2-3 dB.
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Closed Loop Transfer Function

∑ Error
Feedback

RF
cavity

DisturbancesSetpoint and excitation

Cavity field probe

Measured from setpoint to the
error signal;
Quantifies closed-loop
disturbance rejection vs.
frequency offset from fRF;
Proportional and integrator loops
produce high rejection at low
frequencies;
Magnitude on log-log scale, field
setpoint of 1 MV.
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