Closed-loop Feedback Control for Particle Accelerators

D. Teytelman

Dimtel, Inc., San Jose, CA, USA

December 7, 2017

713	Imai	

Outline

Introduction

- Motivation
- Overview of Storage Rings
- A Few Examples of Storage Rings
- Coupled-bunch Instabilities
- Feedback Options

- Technology

- Basic Measurements
- Advanced Diagnostics

Outline

Motivation

- Overview of Storage Rings
- A Few Examples of Storage Rings
- Coupled-bunch Instabilities
- Feedback Options
- 2 Bunch-by-bunch Feedback
 - Overview
 - Technology

Diagnostics

- Basic Measurements
- Advanced Diagnostics

Thresholds		
$I_{\rm nom}/I_{\rm th}$		
500/50		
300/5		
200/10		

 Applications of charged-particle circular accelerators:

- Colliders
- Synchrotron light sources
- In both of these applications beam stability is crucial for achieving design performance (collider luminosity, light source brilliance);
- Coupled-bunch instabilities cause beam loss or reduce performance;

- In the past, machines were designed to operate below the instability threshold;
- Modern storage rings often operate far above the threshold level and require feedback stabilization.

Thresholds		
Machine	$I_{\rm nom}/I_{\rm th}$	
ALS	500/50	
HLS	300/5	
ANKA	200/10	

 Applications of charged-particle circular accelerators:

- Colliders
- Synchrotron light sources
- In both of these applications beam stability is crucial for achieving design performance (collider luminosity, light source brilliance);
- Coupled-bunch instabilities cause beam loss or reduce performance;
- In the past, machines were designed to operate below the instability threshold;
- Modern storage rings often operate far above the threshold level and require feedback stabilization.

Thresholds		
Machine	$I_{\rm nom}/I_{\rm th}$	
ALS	500/50	
HLS	300/5	
ANKA	200/10	

 Applications of charged-particle circular accelerators:

- Colliders
- Synchrotron light sources
- In both of these applications beam stability is crucial for achieving design performance (collider luminosity, light source brilliance);
- Coupled-bunch instabilities cause beam loss or reduce performance;
- In the past, machines were designed to operate below the instability threshold;
- Modern storage rings often operate far above the threshold level and require feedback stabilization.

Thresholds		
Machine	$I_{\rm nom}/I_{\rm th}$	
ALS	500/50	
HLS	300/5	
ANKA	200/10	

 Applications of charged-particle circular accelerators:

- Colliders
- Synchrotron light sources
- In both of these applications beam stability is crucial for achieving design performance (collider luminosity, light source brilliance);
- Coupled-bunch instabilities cause beam loss or reduce performance;
- In the past, machines were designed to operate below the instability threshold;
- Modern storage rings often operate far above the threshold level and require feedback stabilization.

イロト イヨト イヨト イヨト

Thresholds		
Machine	$I_{\rm nom}/I_{\rm th}$	
ALS	500/50	
HLS	300/5	
ANKA	200/10	

 Applications of charged-particle circular accelerators:

- Colliders
- Synchrotron light sources
- In both of these applications beam stability is crucial for achieving design performance (collider luminosity, light source brilliance);
- Coupled-bunch instabilities cause beam loss or reduce performance;
- In the past, machines were designed to operate below the instability threshold;
- Modern storage rings often operate far above the threshold level and require feedback stabilization.

< 回 ト < 三 ト < 三

Outline

Introduction

Motivation

Overview of Storage Rings

- A Few Examples of Storage Rings
- Coupled-bunch Instabilities
- Feedback Options

2 Bunch-by-bunch Feedback

- Overview
- Technology

Diagnostics

- Basic Measurements
- Advanced Diagnostics

- Particles are accelerated to desired energy and injected into a storage ring;
- Vacuum chamber around a closed trajectory;
- Magnetic guide field elements deflect charged particles to follow the nominal orbit;
- Charged particles under acceleration radiate, leading to energy loss;
 - Angular acceleration only!
- Energy lost in one turn is replenished in one or more RF cavities.

- Particles are accelerated to desired energy and injected into a storage ring;
- Vacuum chamber around a closed trajectory;
- Magnetic guide field elements deflect charged particles to follow the nominal orbit;
- Charged particles under acceleration radiate, leading to energy loss;
 - Angular acceleration only!
- Energy lost in one turn is replenished in one or more RF cavities.

- Particles are accelerated to desired energy and injected into a storage ring;
- Vacuum chamber around a closed trajectory;
- Magnetic guide field elements deflect charged particles to follow the nominal orbit;
- Charged particles under acceleration radiate, leading to energy loss;
 - Angular acceleration only!
- Energy lost in one turn is replenished in one or more RF cavities.

- Particles are accelerated to desired energy and injected into a storage ring;
- Vacuum chamber around a closed trajectory;
- Magnetic guide field elements deflect charged particles to follow the nominal orbit;
- Charged particles under acceleration radiate, leading to energy loss;
 - Angular acceleration only!
- Energy lost in one turn is replenished in one or more RF cavities.

- Particles are accelerated to desired energy and injected into a storage ring;
- Vacuum chamber around a closed trajectory;
- Magnetic guide field elements deflect charged particles to follow the nominal orbit;
- Charged particles under acceleration radiate, leading to energy loss;
 - Angular acceleration only!
- Energy lost in one turn is replenished in one or more RF cavities.

- Periodic RF voltage restores the energy lost via radiation;
- Synchronous particle gains exactly the energy lost in one turn;
- Particles above nominal energy take a longer path positive momentum compaction;
- RF voltage slope creates a potential well (longitudinal focusing);
- Integer ratio T_{rev}/T_{RF} (harmonic number) is the number of stable RF buckets where bunches of charged particles can be stored.

- Periodic RF voltage restores the energy lost via radiation;
- Synchronous particle gains exactly the energy lost in one turn;
- Particles above nominal energy take a longer path positive momentum compaction;
- RF voltage slope creates a potential well (longitudinal focusing);
- Integer ratio $T_{\rm rev}/T_{\rm RF}$ (harmonic number) is the number of stable RF buckets where bunches of charged particles can be stored.

- Periodic RF voltage restores the energy lost via radiation;
- Synchronous particle gains exactly the energy lost in one turn;
- Particles above nominal energy take a longer path positive momentum compaction;
- RF voltage slope creates a potential well (longitudinal focusing);
- Integer ratio $T_{\rm rev}/T_{\rm RF}$ (harmonic number) is the number of stable RF buckets where bunches of charged particles can be stored.

- Periodic RF voltage restores the energy lost via radiation;
- Synchronous particle gains exactly the energy lost in one turn;
- Particles above nominal energy take a longer path positive momentum compaction;
- RF voltage slope creates a potential well (longitudinal focusing);
- Integer ratio $T_{\rm rev}/T_{\rm RF}$ (harmonic number) is the number of stable RF buckets where bunches of charged particles can be stored.

- Periodic RF voltage restores the energy lost via radiation;
- Synchronous particle gains exactly the energy lost in one turn;
- Particles above nominal energy take a longer path positive momentum compaction;
- RF voltage slope creates a potential well (longitudinal focusing);
- Integer ratio T_{rev}/T_{RF} (harmonic number) is the number of stable RF buckets where bunches of charged particles can be stored.

Longitudinal Equation of Motion

- Particles can oscillate in the longitudinal potential well;
- Particle motion near synchronous position can be described by the following equation:

$$\ddot{\tau} + 2d_r\dot{\tau} + \omega_s^2\tau = 0$$

- d_r is the radiation damping rate;
- ω_s is the synchrotron frequency;
- This equation describes a damped harmonic oscillator;
- When many particles are stored in one RF bucket, the same equation describes center-of-mass motion.

• • • • • • • • • • • • •

Longitudinal Equation of Motion

- Particles can oscillate in the longitudinal potential well;
- Particle motion near synchronous position can be described by the following equation:

$$\ddot{\tau} + 2d_r\dot{\tau} + \omega_s^2\tau = 0$$

- d_r is the radiation damping rate;
- ω_s is the synchrotron frequency;
- This equation describes a damped harmonic oscillator;
- When many particles are stored in one RF bucket, the same equation describes center-of-mass motion.

- In addition to dipoles, magnetic lattice of a storage ring includes focusing elements;
- Similarly to longitudinal plane, horizontal and vertical motions at low amplitudes behave as damped harmonic oscillators;
- One major difference between longitudinal and transverse motion:
 - Synchrotron period is 50–1000 revolutions;
 - Transversely, particles execute multiple betatron cycles in one revolution.
- When betatron motion is observed at a single point in the ring, it is aliased;
- Only fractional part of betatron frequency (tune) is observed.

- In addition to dipoles, magnetic lattice of a storage ring includes focusing elements;
- Similarly to longitudinal plane, horizontal and vertical motions at low amplitudes behave as damped harmonic oscillators;

• One major difference between longitudinal and transverse motion:

- Synchrotron period is 50–1000 revolutions;
- Transversely, particles execute multiple betatron cycles in one revolution.
- When betatron motion is observed at a single point in the ring, it is aliased;
- Only fractional part of betatron frequency (tune) is observed.

• • • • • • • • • • • •

- In addition to dipoles, magnetic lattice of a storage ring includes focusing elements;
- Similarly to longitudinal plane, horizontal and vertical motions at low amplitudes behave as damped harmonic oscillators;
- One major difference between longitudinal and transverse motion:
 - Synchrotron period is 50–1000 revolutions;
 - Transversely, particles execute multiple betatron cycles in one revolution.
- When betatron motion is observed at a single point in the ring, it is aliased;
- Only fractional part of betatron frequency (tune) is observed.

- In addition to dipoles, magnetic lattice of a storage ring includes focusing elements;
- Similarly to longitudinal plane, horizontal and vertical motions at low amplitudes behave as damped harmonic oscillators;
- One major difference between longitudinal and transverse motion:
 - Synchrotron period is 50–1000 revolutions;
 - Transversely, particles execute multiple betatron cycles in one revolution.
- When betatron motion is observed at a single point in the ring, it is aliased;

• Only fractional part of betatron frequency (tune) is observed.

- In addition to dipoles, magnetic lattice of a storage ring includes focusing elements;
- Similarly to longitudinal plane, horizontal and vertical motions at low amplitudes behave as damped harmonic oscillators;
- One major difference between longitudinal and transverse motion:
 - Synchrotron period is 50–1000 revolutions;
 - Transversely, particles execute multiple betatron cycles in one revolution.
- When betatron motion is observed at a single point in the ring, it is aliased;
- Only fractional part of betatron frequency (tune) is observed.

Feedback

- Single particle in a ring has time domain signal $i(t) = \sum_{n=-\infty}^{\infty} \delta(t nT_{rev})$
- Frequency domain:

 $I(\omega) = \omega_{\text{rev}} \sum_{\rho = -\infty}^{\infty} \delta(\omega - \rho \omega_{\text{rev}})$

Placing identical particles in all RF buckets:

$$i(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT_{\rm RF})$$

$$I(\omega) = \omega_{\rm RF} \sum_{p=-\infty}^{\infty} \delta(\omega - p\omega_{\rm RF})$$

- Assumption of infinitely short bunches produces unphysically wide spectrum;
- For Gaussian bunch with RMS bunch length σ_{τ} :

 $I(\omega) = Q\omega_{\rm RF} e^{-\omega^2 \sigma_\tau^2/2} \sum_{p=-\infty}^{\infty} \delta(\omega - p\omega_{\rm RF})$

- Single particle in a ring has time domain signal $i(t) = \sum_{n=-\infty}^{\infty} \delta(t nT_{rev})$
- Frequency domain:

$$I(\omega) = \omega_{\text{rev}} \sum_{p=-\infty}^{\infty} \delta(\omega - p\omega_{\text{rev}})$$

Placing identical particles in all RF buckets:

$$i(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT_{\rm RF})$$

$$I(\omega) = \omega_{\rm RF} \sum_{p=-\infty}^{\infty} \delta(\omega - p\omega_{\rm RF})$$

- Assumption of infinitely short bunches produces unphysically wide spectrum;
- For Gaussian bunch with RMS bunch length σ_{τ} :

$$I(\omega) = Q\omega_{\rm RF} e^{-\omega^2 \sigma_\tau^2/2} \sum_{p=-\infty}^{\infty} \delta(\omega - p\omega_{\rm RF})$$

- Single particle in a ring has time domain signal $i(t) = \sum_{n=-\infty}^{\infty} \delta(t nT_{rev})$
- Frequency domain:

$$I(\omega) = \omega_{\text{rev}} \sum_{\rho = -\infty}^{\infty} \delta(\omega - \rho \omega_{\text{rev}})$$

• Placing identical particles in all RF buckets:

$$i(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT_{\text{RF}}) I(\omega) = \omega_{\text{RF}} \sum_{p=-\infty}^{\infty} \delta(\omega - p\omega_{\text{RF}})$$

- Assumption of infinitely short bunches produces unphysically wide spectrum;
- For Gaussian bunch with RMS bunch length σ_{τ} :

$$I(\omega) = Q\omega_{\rm RF} e^{-\omega^2 \sigma_\tau^2/2} \sum_{p=-\infty}^{\infty} \delta(\omega - p\omega_{\rm RF})$$

- Single particle in a ring has time domain signal $i(t) = \sum_{n=-\infty}^{\infty} \delta(t nT_{rev})$
- Frequency domain:

$$I(\omega) = \omega_{\text{rev}} \sum_{\rho = -\infty}^{\infty} \delta(\omega - \rho \omega_{\text{rev}})$$

Placing identical particles in all RF buckets:

$$i(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT_{\rm RF}) I(\omega) = \omega_{\rm RF} \sum_{p=-\infty}^{\infty} \delta(\omega - p\omega_{\rm RF})$$

- Assumption of infinitely short bunches produces unphysically wide spectrum;
- For Gaussian bunch with RMS bunch length σ_{τ} : $I(\omega) = Q\omega_{\rm RF}e^{-\omega^2\sigma_{\tau}^2/2}\sum_{p=-\infty}^{\infty}\delta(\omega - p\omega_{\rm F})$

- Single particle in a ring has time domain signal $i(t) = \sum_{n=-\infty}^{\infty} \delta(t nT_{rev})$
- Frequency domain:

$$I(\omega) = \omega_{\text{rev}} \sum_{\rho = -\infty}^{\infty} \delta(\omega - \rho \omega_{\text{rev}})$$

 Placing identical particles in all RF buckets:

$$i(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT_{\rm RF}) I(\omega) = \omega_{\rm RF} \sum_{p=-\infty}^{\infty} \delta(\omega - p\omega_{\rm RF})$$

- Assumption of infinitely short bunches produces unphysically wide spectrum;
- For Gaussian bunch with RMS bunch length σ_{τ} : $I(\omega) = Q\omega_{\text{RF}}e^{-\omega^2\sigma_{\tau}^2/2}\sum_{p=-\infty}^{\infty}\delta(\omega - p\omega_{\text{RF}})$

• Synchrotron oscillation is a phase modulation of beam signal;

- At low amplitudes of motion, synchrotron sidebands appear around the harmonics of the revolution frequency;
- At larger amplitudes of motion (higher phase modulation index), harmonics of synchrotron frequency become significant;
- Signal repeats at multiples of RF frequency, with increasing phase modulation index, i.e. larger synchrotron harmonics;
- Betatron oscillation causes the beam to pass closer to or farther from the detector;
- Amplitude modulation;
- Aliased betatron frequency sidebands of the revolution harmonics;
- For rigid bunch centroid motion, full information appears in $f_{\rm RF}/2$ band above or below each RF harmonic.

- Synchrotron oscillation is a phase modulation of beam signal;
- At low amplitudes of motion, synchrotron sidebands appear around the harmonics of the revolution frequency;
- At larger amplitudes of motion (higher phase modulation index), harmonics of synchrotron frequency become significant;
- Signal repeats at multiples of RF frequency, with increasing phase modulation index, i.e. larger synchrotron harmonics;
- Betatron oscillation causes the beam to pass closer to or farther from the detector;
- Amplitude modulation;
- Aliased betatron frequency sidebands of the revolution harmonics;
- For rigid bunch centroid motion, full information appears in $f_{\rm RF}/2$ band above or below each RF harmonic.

- Synchrotron oscillation is a phase modulation of beam signal;
- At low amplitudes of motion, synchrotron sidebands appear around the harmonics of the revolution frequency;
- At larger amplitudes of motion (higher phase modulation index), harmonics of synchrotron frequency become significant;
- Signal repeats at multiples of RF frequency, with increasing phase modulation index, i.e. larger synchrotron harmonics;
- Betatron oscillation causes the beam to pass closer to or farther from the detector;
- Amplitude modulation;
- Aliased betatron frequency sidebands of the revolution harmonics;
- For rigid bunch centroid motion, full information appears in $f_{\rm RF}/2$ band above or below each RF harmonic.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Synchrotron oscillation is a phase modulation of beam signal;
- At low amplitudes of motion, synchrotron sidebands appear around the harmonics of the revolution frequency;
- At larger amplitudes of motion (higher phase modulation index), harmonics of synchrotron frequency become significant;
- Signal repeats at multiples of RF frequency, with increasing phase modulation index, i.e. larger synchrotron harmonics;
- Betatron oscillation causes the beam to pass closer to or farther from the detector;
- Amplitude modulation;
- Aliased betatron frequency sidebands of the revolution harmonics;
- For rigid bunch centroid motion, full information appears in $f_{\rm RF}/2$ band above or below each RF harmonic.

- Synchrotron oscillation is a phase modulation of beam signal;
- At low amplitudes of motion, synchrotron sidebands appear around the harmonics of the revolution frequency;
- At larger amplitudes of motion (higher phase modulation index), harmonics of synchrotron frequency become significant;
- Signal repeats at multiples of RF frequency, with increasing phase modulation index, i.e. larger synchrotron harmonics;
- Betatron oscillation causes the beam to pass closer to or farther from the detector;
- Amplitude modulation;
- Aliased betatron frequency sidebands of the revolution harmonics;
- For rigid bunch centroid motion, full information appears in $f_{\rm RF}/2$ band above or below each RF harmonic.

< 日 > < 同 > < 回 > < 回 > < □ > <
Synchrotron and Betatron Oscillation

- Synchrotron oscillation is a phase modulation of beam signal;
- At low amplitudes of motion, synchrotron sidebands appear around the harmonics of the revolution frequency;
- At larger amplitudes of motion (higher phase modulation index), harmonics of synchrotron frequency become significant;
- Signal repeats at multiples of RF frequency, with increasing phase modulation index, i.e. larger synchrotron harmonics;
- Betatron oscillation causes the beam to pass closer to or farther from the detector;
- Amplitude modulation;
- Aliased betatron frequency sidebands of the revolution harmonics;
- For rigid bunch centroid motion, full information appears in $f_{\rm RF}/2$ band above or below each RF harmonic.

・ロト ・ 四ト ・ ヨト ・ ヨト …

Outline

Introduction

- Motivation
- Overview of Storage Rings

• A Few Examples of Storage Rings

- Coupled-bunch Instabilities
- Feedback Options

2 Bunch-by-bunch Feedback

- Overview
- Technology

Diagnostics

- Basic Measurements
- Advanced Diagnostics

< 6 k

Metrology Light Source

Parameters

Parameter	Value
Circumference	48 m
RF frequency	500 MHz
Harmonic number	80
Energy	105–629 MeV
Design current	100 mA

Application: Synchrotron Light Source, Primary Radiation Standard.

• • • • • • • • • • • •

CSS-SCVC 13 / 61

Hefei Light Source

Image courtesy of USTC NSRL

Parameters

Parameter	Value
Circumference	66 m
RF frequency	204 MHz
Harmonic number	45
Energy	800 MeV
Design current	300 mA

Application: Synchrotron Light Source.

Australian Synchrotron

Image courtesy of Australian Synchrotron

Parameters

Parameter	Value
Circumference	216 m
RF frequency	500 MHz
Harmonic number	360
Energy	3 GeV
Design current	200 mA

Application: Synchrotron Light Source.

MAX IV 3 GeV

Image from Lund University Media Bank

Parameters

Parameter	Value
Circumference	528 m
RF frequency	100 MHz
Harmonic number	176
Energy	3 GeV
Design current	500 mA

Application: Synchrotron Light Source.

イロト イヨト イヨト イヨト

KEK B-Factory

Image credit: KEK

Parameters

Parameter	Value
Circumference	3016 m
RF frequency	509 MHz
Harmonic number	5120
Energy	4/7 GeV
Design current	3.6/2.6 A

Application: Two ring e^+/e^- collider.

イロト イヨト イヨト イヨト

Outline

Introduction

- Motivation
- **Overview of Storage Rings**
- A Few Examples of Storage Rings

Coupled-bunch Instabilities

Feedback Options

- Basic Measurements
- Advanced Diagnostics

< 6 k

- Bunch passing through a resonant structure excites a wakefield which is sampled by the following bunches a coupling mechanism;
- In practice the wakefields have much longer damping times than illustrated here;
- Longitudinal bunch oscillation → phase modulation of the wakefield → slope of the wake voltage sampled by the following bunches determines the coupling.
- For certain combinations of wakefield amplitudes and frequencies the overall system becomes unstable.

- Bunch passing through a resonant structure excites a wakefield which is sampled by the following bunches a coupling mechanism;
- In practice the wakefields have much longer damping times than illustrated here;
- Longitudinal bunch oscillation → phase modulation of the wakefield → slope of the wake voltage sampled by the following bunches determines the coupling.
- For certain combinations of wakefield amplitudes and frequencies the overall system becomes unstable.

- Bunch passing through a resonant structure excites a wakefield which is sampled by the following bunches a coupling mechanism;
- In practice the wakefields have much longer damping times than illustrated here;
- Longitudinal bunch oscillation → phase modulation of the wakefield → slope of the wake voltage sampled by the following bunches determines the coupling.
- For certain combinations of wakefield amplitudes and frequencies the overall system becomes unstable.

- Bunch passing through a resonant structure excites a wakefield which is sampled by the following bunches a coupling mechanism;
- In practice the wakefields have much longer damping times than illustrated here;
- Longitudinal bunch oscillation → phase modulation of the wakefield → slope of the wake voltage sampled by the following bunches determines the coupling.
- For certain combinations of wakefield amplitudes and frequencies the overall system becomes unstable.

Feedback

- A system of N bunches (coupled harmonic oscillators) has N eigenmodes;
- From symmetry considerations we find that the eigenmodes correspond to Fourier vectors;
- Mode number *m* describes the number of oscillation periods over one turn;
- Wakefields affect the modal eigenvalues in both real (growth rate) and imaginary (oscillation frequency) parts;
- Motion of bunch *k* oscillating in mode *m* is given by: $A_m e^{2\pi km/N} e^{\Lambda_m t}$
 - A_m modal amplitude;
 - Λ_m complex modal eigenvalue.

< ロ > < 同 > < 回 > < 回 >

- A system of N bunches (coupled harmonic oscillators) has N eigenmodes;
- From symmetry considerations we find that the eigenmodes correspond to Fourier vectors;
- Mode number *m* describes the number of oscillation periods over one turn;
- Wakefields affect the modal eigenvalues in both real (growth rate) and imaginary (oscillation frequency) parts;
- Motion of bunch *k* oscillating in mode *m* is given by: $A_m e^{2\pi km/N} e^{\Lambda_m t}$
 - ► *A_m* modal amplitude;
 - Λ_m complex modal eigenvalue.

- A system of N bunches (coupled harmonic oscillators) has N eigenmodes;
- From symmetry considerations we find that the eigenmodes correspond to Fourier vectors;
- Mode number *m* describes the number of oscillation periods over one turn;
- Wakefields affect the modal eigenvalues in both real (growth rate) and imaginary (oscillation frequency) parts;
- Motion of bunch *k* oscillating in mode *m* is given by: $A_m e^{2\pi km/N} e^{\Lambda_m t}$
 - ► *A_m* modal amplitude;
 - Λ_m complex modal eigenvalue.

- A system of N bunches (coupled harmonic oscillators) has N eigenmodes;
- From symmetry considerations we find that the eigenmodes correspond to Fourier vectors;
- Mode number *m* describes the number of oscillation periods over one turn;
- Wakefields affect the modal eigenvalues in both real (growth rate) and imaginary (oscillation frequency) parts;
- Motion of bunch *k* oscillating in mode *m* is given by: $A_m e^{2\pi km/N} e^{\Lambda_m t}$
 - ► *A_m* modal amplitude;
 - Λ_m complex modal eigenvalue.

- A system of N bunches (coupled harmonic oscillators) has N eigenmodes;
- From symmetry considerations we find that the eigenmodes correspond to Fourier vectors;
- Mode number *m* describes the number of oscillation periods over one turn;
- Wakefields affect the modal eigenvalues in both real (growth rate) and imaginary (oscillation frequency) parts;
- Motion of bunch *k* oscillating in mode *m* is given by: $A_m e^{2\pi km/N} e^{\Lambda_m t}$
 - A_m modal amplitude;
 - Λ_m complex modal eigenvalue.

く 戸 と く ヨ と く ヨ と …

Modal Oscillation Example

- Harmonic number of 8;
- Top plot mode 1;
- Bottom mode 7;
- All bunches oscillate at the same amplitude and frequency, but different phases;
- Cannot distinguish modes m and N – m (or –m) from a single turn snapshot.

Modal Oscillation With Damping

• Same modes with damping.

4 A N

-

713	1 m	toll
		IEII

CSS-SCVC 22 / 61

- Beam interacts with wakefields (impedances in frequency domain) at synchrotron or betatron sidebands of revolution harmonics;
- Impedance functions are aliased, since they are sampled by the beam;
- Longitudinal: $\Lambda_m = (-\lambda_{\text{rad}}^{\parallel} + i\omega_s) + \frac{\pi \alpha e f_r^2 h_0}{E_0 h \omega_s} Z^{\parallel \text{eff}}(m\omega_0 + \omega_s);$
- Effective impedance: $Z^{\parallel \text{eff}}(\omega) = \sum_{p=-\infty}^{\infty} \frac{p\omega_{\text{rf}}+\omega}{\omega_{\text{rf}}} Z^{\parallel}(p\omega_{\text{rf}}+\omega)$
- Transverse: $\Lambda_m = (-\lambda_{\text{rad}}^{\perp} + i\omega_{\beta}) \frac{cef_{\text{rev}}I_0}{2\omega_{\beta}E_0}Z^{\perp \text{eff}}(m\omega_0 + \omega_{\beta})$
- Effective impedance: $Z^{\perp eff}(\omega) = \sum_{p=-\infty}^{\infty} Z^{\perp}(p\omega_{rf} + \omega)$

- Beam interacts with wakefields (impedances in frequency domain) at synchrotron or betatron sidebands of revolution harmonics;
- Impedance functions are aliased, since they are sampled by the beam;
- Longitudinal: $\Lambda_m = (-\lambda_{\text{rad}}^{\parallel} + i\omega_s) + \frac{\pi \alpha e f_r^2 h_0}{E_0 h \omega_s} Z^{\parallel \text{eff}}(m\omega_0 + \omega_s);$
- Effective impedance: $Z^{\parallel \text{eff}}(\omega) = \sum_{p=-\infty}^{\infty} \frac{p\omega_{\text{rf}}+\omega}{\omega_{\text{rf}}} Z^{\parallel}(p\omega_{\text{rf}}+\omega)$
- Transverse: $\Lambda_m = (-\lambda_{\text{rad}}^{\perp} + i\omega_{\beta}) \frac{cef_{\text{rev}}l_0}{2\omega_{\beta}E_0}Z^{\perp \text{eff}}(m\omega_0 + \omega_{\beta})$
- Effective impedance: $Z^{\perp eff}(\omega) = \sum_{p=-\infty}^{\infty} Z^{\perp}(p\omega_{rf} + \omega)$

- Beam interacts with wakefields (impedances in frequency domain) at synchrotron or betatron sidebands of revolution harmonics;
- Impedance functions are aliased, since they are sampled by the beam;
- Longitudinal: $\Lambda_m = (-\lambda_{\text{rad}}^{\parallel} + i\omega_s) + \frac{\pi \alpha e f_{\text{rf}}^2 I_0}{E_0 \hbar \omega_s} Z^{\parallel \text{eff}}(m\omega_0 + \omega_s);$
- Effective impedance: $Z^{\parallel \text{eff}}(\omega) = \sum_{p=-\infty}^{\infty} \frac{p\omega_{\text{rf}}+\omega}{\omega_{\text{rf}}} Z^{\parallel}(p\omega_{\text{rf}}+\omega)$
- Transverse: $\Lambda_m = (-\lambda_{\text{rad}}^{\perp} + i\omega_{\beta}) \frac{cef_{\text{rev}}I_0}{2\omega_{\beta}E_0}Z^{\perp \text{eff}}(m\omega_0 + \omega_{\beta})$
- Effective impedance: $Z^{\perp eff}(\omega) = \sum_{p=-\infty}^{\infty} Z^{\perp}(p\omega_{rf} + \omega)$

イロト 不得 トイヨト イヨト 二日

- Beam interacts with wakefields (impedances in frequency domain) at synchrotron or betatron sidebands of revolution harmonics;
- Impedance functions are aliased, since they are sampled by the beam;
- Longitudinal: $\Lambda_m = (-\lambda_{\text{rad}}^{\parallel} + i\omega_s) + \frac{\pi \alpha e f_{\text{rf}}^2 I_0}{E_0 h \omega_s} Z^{\parallel \text{eff}}(m\omega_0 + \omega_s);$
- Effective impedance: $Z^{\parallel \text{eff}}(\omega) = \sum_{p=-\infty}^{\infty} \frac{p\omega_{\text{rf}}+\omega}{\omega_{\text{rf}}} Z^{\parallel}(p\omega_{\text{rf}}+\omega)$
- Transverse: $\Lambda_m = (-\lambda_{rad}^{\perp} + i\omega_{\beta}) \frac{cef_{rev}I_0}{2\omega_{\beta}E_0}Z^{\perp eff}(m\omega_0 + \omega_{\beta})$
- Effective impedance: $Z^{\perp eff}(\omega) = \sum_{p=-\infty}^{\infty} Z^{\perp}(p\omega_{rf} + \omega)$

Outline

Introduction

- Motivation
- Overview of Storage Rings
- A Few Examples of Storage Rings
- Coupled-bunch Instabilities
- Feedback Options

2 Bunch-by-bunch Feedback

- Overview
- Technology

Diagnostics

- Basic Measurements
- Advanced Diagnostics

< 6 k

- Historically, people started fighting coupled-bunch instabilities in the frequency domain by building mode-by-mode systems;
 - Driven by relatively small number of bunches in the early machines;
 - Correspondingly, few modes and even fewer unstable modes.
- Such systems rapidly became impractical in storage rings with hundreds or thousands of bunches;
- In the mid-1980s first time-domain systems started to appear, performing bunch-by-bunch processing;
- Progress of DSP technology in 1990s and 2000s led to the development of programmable digital systems;
- Pioneered at SLAC by Dr. John D. Fox.

< ロ > < 同 > < 回 > < 回 >

- Historically, people started fighting coupled-bunch instabilities in the frequency domain by building mode-by-mode systems;
 - Driven by relatively small number of bunches in the early machines;
 - Correspondingly, few modes and even fewer unstable modes.
- Such systems rapidly became impractical in storage rings with hundreds or thousands of bunches;
- In the mid-1980s first time-domain systems started to appear, performing bunch-by-bunch processing;
- Progress of DSP technology in 1990s and 2000s led to the development of programmable digital systems;
- Pioneered at SLAC by Dr. John D. Fox.

- Historically, people started fighting coupled-bunch instabilities in the frequency domain by building mode-by-mode systems;
 - Driven by relatively small number of bunches in the early machines;
 - Correspondingly, few modes and even fewer unstable modes.
- Such systems rapidly became impractical in storage rings with hundreds or thousands of bunches;
- In the mid-1980s first time-domain systems started to appear, performing bunch-by-bunch processing;
- Progress of DSP technology in 1990s and 2000s led to the development of programmable digital systems;
- Pioneered at SLAC by Dr. John D. Fox.

- Historically, people started fighting coupled-bunch instabilities in the frequency domain by building mode-by-mode systems;
 - Driven by relatively small number of bunches in the early machines;
 - Correspondingly, few modes and even fewer unstable modes.
- Such systems rapidly became impractical in storage rings with hundreds or thousands of bunches;
- In the mid-1980s first time-domain systems started to appear, performing bunch-by-bunch processing;
- Progress of DSP technology in 1990s and 2000s led to the development of programmable digital systems;
- Pioneered at SLAC by Dr. John D. Fox.

- Historically, people started fighting coupled-bunch instabilities in the frequency domain by building mode-by-mode systems;
 - Driven by relatively small number of bunches in the early machines;
 - Correspondingly, few modes and even fewer unstable modes.
- Such systems rapidly became impractical in storage rings with hundreds or thousands of bunches;
- In the mid-1980s first time-domain systems started to appear, performing bunch-by-bunch processing;
- Progress of DSP technology in 1990s and 2000s led to the development of programmable digital systems;
- Pioneered at SLAC by Dr. John D. Fox.

Outline

Introduction

- Motivation
- Overview of Storage Rings
- A Few Examples of Storage Rings
- Coupled-bunch Instabilities
- Feedback Options

Bunch-by-bunch Feedback

- Overview
- Technology

Diagnostics

- Basic Measurements
- Advanced Diagnostics

A

Outline

Introduction

- Motivation
- Overview of Storage Rings
- A Few Examples of Storage Rings
- Coupled-bunch Instabilities
- Feedback Options
- 2 Bunch-by-bunch Feedback
 - Overview
 - Technology

Diagnostics

- Basic Measurements
- Advanced Diagnostics

< 6 k

Bunch-by-bunch Feedback

Definition

In bunch-by-bunch feedback approach the actuator signal for a given bunch depends only on the past motion of that bunch.

- Bunches are processed sequentially;
- Correction kicks are applied one or more turns later;
- Diagonal feedback computationally efficient;
- Extremely popular in storage rings why?

MIMO Model of Bunch-by-bunch Feedback

- N bunch positions and feedback kicks;
- Diagonal feedback matrix $H(\omega)$ **I**;
- Invariant under coordinate transformations.

713	Im	
10		,

★ ∃ >

MIMO Model of Bunch-by-bunch Feedback

- Coordinate transformation to eigenmode basis;
- N feedback loops one per mode;
- Identical feedback applied to each mode.

n	H	r	۲	2	•	n	
	ų			5	-	١,	

Outline

Introduction

- Motivation
- Overview of Storage Rings
- A Few Examples of Storage Rings
- Coupled-bunch Instabilities
- Feedback Options

Bunch-by-bunch Feedback

- Overview
- Technology

Diagnostics

- Basic Measurements
- Advanced Diagnostics

< 6 k

Bunch-by-bunch Feedback

- Sensor (pickup);
- Analog front-end;
- Controller;
- Analog back-end;
- Actuator (kicker).

-

- Sensor (pickup);
- Analog front-end;
- Controller;
- Analog back-end;
- Actuator (kicker).

-

- To sense beam position we typically use capacitive button beam position monitors (BPMs);
- Arrangement of pickups is driven by the need to avoid synchrotron radiation fan;
 - Horizontal/vertical buttons are easier to process.
- Buttons couple capacitively to the beam, differentiating bunch current shape;
- BPM signals are wideband differentiated pulses with 100–400 ps duration;
- Differentiation means sensor gain increases with frequency.

- To sense beam position we typically use capacitive button beam position monitors (BPMs);
- Arrangement of pickups is driven by the need to avoid synchrotron radiation fan;
 - Horizontal/vertical buttons are easier to process.
- Buttons couple capacitively to the beam, differentiating bunch current shape;
- BPM signals are wideband differentiated pulses with 100–400 ps duration;
- Differentiation means sensor gain increases with frequency.

- To sense beam position we typically use capacitive button beam position monitors (BPMs);
- Arrangement of pickups is driven by the need to avoid synchrotron radiation fan;
 - Horizontal/vertical buttons are easier to process.
- Buttons couple capacitively to the beam, differentiating bunch current shape;
- BPM signals are wideband differentiated pulses with 100–400 ps duration;
- Differentiation means sensor gain increases with frequency.

- To sense beam position we typically use capacitive button beam position monitors (BPMs);
- Arrangement of pickups is driven by the need to avoid synchrotron radiation fan;
 - Horizontal/vertical buttons are easier to process.
- Buttons couple capacitively to the beam, differentiating bunch current shape;
- BPM signals are wideband differentiated pulses with 100–400 ps duration;
- Differentiation means sensor gain increases with frequency.

- To sense beam position we typically use capacitive button beam position monitors (BPMs);
- Arrangement of pickups is driven by the need to avoid synchrotron radiation fan;
 - Horizontal/vertical buttons are easier to process.
- Buttons couple capacitively to the beam, differentiating bunch current shape;
- BPM signals are wideband differentiated pulses with 100–400 ps duration;
- Differentiation means sensor gain increases with frequency.

- Sensor (pickup);
- Analog front-end;
- Controller;
- Analog back-end;
- Actuator (kicker).

-

- Sensor (pickup);
- Analog front-end;
- Controller;
- Analog back-end;
- Actuator (kicker).

-

- First stage of BPM signal processing separating X/Y/Z signals (some of you might recognize monopulse comparator structure);
- Since we are digitizing in the end, why not digitize raw signals?
- For X and Y we are dealing with small differences of large signals;
- If we can reject the common-mode at 20–30 dB level, that is also the gain of low-noise amplifier we can use to improve sensitivity.

- First stage of BPM signal processing separating X/Y/Z signals (some of you might recognize monopulse comparator structure);
- Since we are digitizing in the end, why not digitize raw signals?
- For X and Y we are dealing with small differences of large signals;
- If we can reject the common-mode at 20–30 dB level, that is also the gain of low-noise amplifier we can use to improve sensitivity.

- First stage of BPM signal processing separating X/Y/Z signals (some of you might recognize monopulse comparator structure);
- Since we are digitizing in the end, why not digitize raw signals?
- For X and Y we are dealing with small differences of large signals;
- If we can reject the common-mode at 20–30 dB level, that is also the gain of low-noise amplifier we can use to improve sensitivity.

- First stage of BPM signal processing separating X/Y/Z signals (some of you might recognize monopulse comparator structure);
- Since we are digitizing in the end, why not digitize raw signals?
- For X and Y we are dealing with small differences of large signals;
- If we can reject the common-mode at 20–30 dB level, that is also the gain of low-noise amplifier we can use to improve sensitivity.

Analog Front-end Design

- Front-end requirements:
 - Low amplitude and phase noise;
 - Wideband to ensure high isolation between neighboring bunches.
- Input bandpass filter is an analog FIR filter that replicates BPM pulse with spacing, matched to detection LO period;
- Detection frequency choice:
 - High frequencies for sensitivity;
 - Must stay below the propagation cut-off frequency of the vacuum chamber.
- Local oscillator adjusted for amplitude (transverse) or phase (longitudinal) detection.

< ロ > < 同 > < 回 > < 回 >

Analog Front-end Design

- Front-end requirements:
 - Low amplitude and phase noise;
 - Wideband to ensure high isolation between neighboring bunches.
- Input bandpass filter is an analog FIR filter that replicates BPM pulse with spacing, matched to detection LO period;
- Detection frequency choice:
 - High frequencies for sensitivity;
 - Must stay below the propagation cut-off frequency of the vacuum chamber.
- Local oscillator adjusted for amplitude (transverse) or phase (longitudinal) detection.

Analog Front-end Design

- Front-end requirements:
 - Low amplitude and phase noise;
 - Wideband to ensure high isolation between neighboring bunches.
- Input bandpass filter is an analog FIR filter that replicates BPM pulse with spacing, matched to detection LO period;
- Detection frequency choice:
 - High frequencies for sensitivity;
 - Must stay below the propagation cut-off frequency of the vacuum chamber.
- Local oscillator adjusted for amplitude (transverse) or phase (longitudinal) detection.

	-	
	ĽЪ	tol
	-	
- 1		

Feedback

< ロ > < 同 > < 回 > < 回 >

- Sensor (pickup);
- Analog front-end;
- Controller;
- Analog back-end;
- Actuator (kicker).

- Sensor (pickup);
- Analog front-end;
- Controller;
- Analog back-end;
- Actuator (kicker).

Baseband Signal Processor

 Block diagram of a type frequently seen in accelerator context: ADC, FPGA, and DAC;

ADC, DAC: 12–14 bit, 500–600 MSPS, 400 ps rise/fall times;

• FPGA implements algorithmically simple, but computationally intensive processing.

Baseband Signal Processor

- Block diagram of a type frequently seen in accelerator context: ADC, FPGA, and DAC;
- ADC, DAC: 12-14 bit, 500-600 MSPS, 400 ps rise/fall times;
- FPGA implements algorithmically simple, but computationally intensive processing.

_	 in	ъ÷.	\sim	•
		ш	-	

Baseband Signal Processor

- Block diagram of a type frequently seen in accelerator context: ADC, FPGA, and DAC;
- ADC, DAC: 12-14 bit, 500-600 MSPS, 400 ps rise/fall times;
- FPGA implements algorithmically simple, but computationally intensive processing.

_	 in	ъ÷.	\sim	•
		ш	-	

< ロ > < 同 > < 回 > < 回 >

Inside the FPGA

- Multiple filter chains to match FPGA processing rate to the bunch crossing rate;
- Uneven stepping scheme use groups of n and n + 1 bunches to make sure signal from a given bunch ends up in the same filter chain on consecutive turns;
- Bunch-by-bunch excitation and feedback enables;
- Back-end compensation.

< ロ > < 同 > < 回 > < 回 >

Inside the FPGA

- Multiple filter chains to match FPGA processing rate to the bunch crossing rate;
- Uneven stepping scheme use groups of n and n + 1 bunches to make sure signal from a given bunch ends up in the same filter chain on consecutive turns;
- Bunch-by-bunch excitation and feedback enables;
- Back-end compensation.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Inside the FPGA

- Multiple filter chains to match FPGA processing rate to the bunch crossing rate;
- Uneven stepping scheme use groups of n and n + 1 bunches to make sure signal from a given bunch ends up in the same filter chain on consecutive turns;
- Bunch-by-bunch excitation and feedback enables;
- Back-end compensation.

A B b 4 B b

Feedback Filter

- Requirements:
 - Adjustable phase shift at the tune frequency;
 - DC rejection to get rid of constant orbit offsets;
 - Low group delay.
- Filter design approach sample one period of a sine wave;
 - Group delay is ¹/₂ of oscillation period;
 - Nicely parameterized, often close to optimal.
- More sophisticated design methods are required when large perturbations are present or with variable beam dynamics, etc.

< 同 > < ∃ >

- Sensor (pickup);
- Analog front-end;
- Controller;
- Analog back-end;
- Actuator (kicker).

- Sensor (pickup);
- Analog front-end;
- Controller;
- Analog back-end;
- Actuator (kicker).

- N

- Longitudinal kickers are usually built as highly damped (low Q, wideband) cavities at 1–1.5 GHz;
- Baseband kick must be upconverted to the right frequency to drive these;
- Phase linearity is critical to maintain the same feedback for different modes;
- Constant group-delay filters are used to create single-sideband modulation to efficiently drive kicker cavity.

- Longitudinal kickers are usually built as highly damped (low Q, wideband) cavities at 1–1.5 GHz;
- Baseband kick must be upconverted to the right frequency to drive these;
- Phase linearity is critical to maintain the same feedback for different modes;
- Constant group-delay filters are used to create single-sideband modulation to efficiently drive kicker cavity.

< ロ > < 同 > < 回 > < 回 >

- Longitudinal kickers are usually built as highly damped (low Q, wideband) cavities at 1–1.5 GHz;
- Baseband kick must be upconverted to the right frequency to drive these;
- Phase linearity is critical to maintain the same feedback for different modes;
- Constant group-delay filters are used to create single-sideband modulation to efficiently drive kicker cavity.

< ロ > < 同 > < 回 > < 回 >

- Longitudinal kickers are usually built as highly damped (low Q, wideband) cavities at 1–1.5 GHz;
- Baseband kick must be upconverted to the right frequency to drive these;
- Phase linearity is critical to maintain the same feedback for different modes;
- Constant group-delay filters are used to create single-sideband modulation to efficiently drive kicker cavity.

• • • • • • • • • • • • •

- Sensor (pickup);
- Analog front-end;
- Controller;
- Analog back-end;
- Actuator (kicker).

- Sensor (pickup);
- Analog front-end;
- Controller;
- Analog back-end;
- Actuator (kicker).

Transverse Kicker

- 50 Ω striplines driven Differentially;
- Counter-propagating beam and kick signals;
- For 2 ns bunch spacing maximum stripline length is 1 ns:
 - Fill time of 1 ns;
 - Beam propagation time of 1 ns;
 - Longer striplines will couple the kick to neighboring bunches.
- Shorter striplines do better in frequency domain, have smaller kick.

Transverse Kicker

- 50 Ω striplines driven Differentially;
- Counter-propagating beam and kick signals;
- For 2 ns bunch spacing maximum stripline length is 1 ns:
 - Fill time of 1 ns;
 - Beam propagation time of 1 ns;
 - Longer striplines will couple the kick to neighboring bunches.
- Shorter striplines do better in frequency domain, have smaller kick.

Transverse Kicker

- 50 Ω striplines driven Differentially;
- Counter-propagating beam and kick signals;
- For 2 ns bunch spacing maximum stripline length is 1 ns:
 - Fill time of 1 ns;
 - Beam propagation time of 1 ns;
 - Longer striplines will couple the kick to neighboring bunches.
- Shorter striplines do better in frequency domain, have smaller kick.

Outline

Introduction

- Motivation
- Overview of Storage Rings
- A Few Examples of Storage Rings
- Coupled-bunch Instabilities
- Feedback Options
- 2 Bunch-by-bunch Feedback
 - Overview
 - Technology

Diagnostics

- Basic Measurements
- Advanced Diagnostics
Outline

Introduction

- Motivation
- Overview of Storage Rings
- A Few Examples of Storage Rings
- Coupled-bunch Instabilities
- Feedback Options
- 2 Bunch-by-bunch Feedback
 - Overview
 - Technology

Diagnostics

Basic Measurements
Advanced Diagnostics

A .

- Standard methods of characterization:
 - Frequency domain transfer function;
 - Time domain step/pulse response.
- These methods fail for unstable beam;
- In 1990s our group at SLAC developed so-called transient diagnostics:
 - Upon some trigger, turn off feedback and start recording beam motion;
 - Unstable motion grows from ever-present noise-floor level excitation;
 - After an adjustable open-loop time period, turn feedback on;
- Resulting data set captures open-loop growth of the fastest unstable modes and closed-loop damping;
- Used to characterize driving terms (impedances) and feedback performance, optimize tuning.

< ロ > < 同 > < 回 > < 回 >

- Standard methods of characterization:
 - Frequency domain transfer function;
 - ► Time domain step/pulse response.
- These methods fail for unstable beam;
- In 1990s our group at SLAC developed so-called transient diagnostics:
 - Upon some trigger, turn off feedback and start recording beam motion;
 - Unstable motion grows from ever-present noise-floor level excitation;
 - After an adjustable open-loop time period, turn feedback on;
- Resulting data set captures open-loop growth of the fastest unstable modes and closed-loop damping;
- Used to characterize driving terms (impedances) and feedback performance, optimize tuning.

< ロ > < 同 > < 回 > < 回 >

- Standard methods of characterization:
 - Frequency domain transfer function;
 - ► Time domain step/pulse response.
- These methods fail for unstable beam;
- In 1990s our group at SLAC developed so-called transient diagnostics:
 - Upon some trigger, turn off feedback and start recording beam motion;
 - Unstable motion grows from ever-present noise-floor level excitation;
 - After an adjustable open-loop time period, turn feedback on;
- Resulting data set captures open-loop growth of the fastest unstable modes and closed-loop damping;
- Used to characterize driving terms (impedances) and feedback performance, optimize tuning.

- Standard methods of characterization:
 - Frequency domain transfer function;
 - ► Time domain step/pulse response.
- These methods fail for unstable beam;
- In 1990s our group at SLAC developed so-called transient diagnostics:
 - Upon some trigger, turn off feedback and start recording beam motion;
 - Unstable motion grows from ever-present noise-floor level excitation;
 - After an adjustable open-loop time period, turn feedback on;
- Resulting data set captures open-loop growth of the fastest unstable modes and closed-loop damping;
- Used to characterize driving terms (impedances) and feedback performance, optimize tuning.

- Standard methods of characterization:
 - Frequency domain transfer function;
 - ► Time domain step/pulse response.
- These methods fail for unstable beam;
- In 1990s our group at SLAC developed so-called transient diagnostics:
 - Upon some trigger, turn off feedback and start recording beam motion;
 - Unstable motion grows from ever-present noise-floor level excitation;
 - After an adjustable open-loop time period, turn feedback on;
- Resulting data set captures open-loop growth of the fastest unstable modes and closed-loop damping;
- Used to characterize driving terms (impedances) and feedback performance, optimize tuning.

- Standard methods of characterization:
 - Frequency domain transfer function;
 - ► Time domain step/pulse response.
- These methods fail for unstable beam;
- In 1990s our group at SLAC developed so-called transient diagnostics:
 - Upon some trigger, turn off feedback and start recording beam motion;
 - Unstable motion grows from ever-present noise-floor level excitation;
 - After an adjustable open-loop time period, turn feedback on;
- Resulting data set captures open-loop growth of the fastest unstable modes and closed-loop damping;
- Used to characterize driving terms (impedances) and feedback performance, optimize tuning.

- Standard methods of characterization:
 - Frequency domain transfer function;
 - ► Time domain step/pulse response.
- These methods fail for unstable beam;
- In 1990s our group at SLAC developed so-called transient diagnostics:
 - Upon some trigger, turn off feedback and start recording beam motion;
 - Unstable motion grows from ever-present noise-floor level excitation;
 - After an adjustable open-loop time period, turn feedback on;
- Resulting data set captures open-loop growth of the fastest unstable modes and closed-loop damping;
- Used to characterize driving terms (impedances) and feedback performance, optimize tuning.

< ロ > < 同 > < 回 > < 回 >

- Grow/damp at 100 mA, 8 ms growth time;
- Only resistive wall modes;
- Damping rates non-uniform low frequency response of the amplifier?
- Fits look very clean, textbook exponential transients;
- Filled to 200 mA, not limited by instabilities;
- Growth time too long, when feedback turns on there is not enough gain to damp the motion.

- Grow/damp at 100 mA, 8 ms growth time;
- Only resistive wall modes;
- Damping rates non-uniform low frequency response of the amplifier?
- Fits look very clean, textbook exponential transients;
- Filled to 200 mA, not limited by instabilities;
- Growth time too long, when feedback turns on there is not enough gain to damp the motion.

- Grow/damp at 100 mA, 8 ms growth time;
- Only resistive wall modes;
- Damping rates non-uniform low frequency response of the amplifier?
- Fits look very clean, textbook exponential transients;
- Filled to 200 mA, not limited by instabilities;
- Growth time too long, when feedback turns on there is not enough gain to damp the motion.

- Grow/damp at 100 mA, 8 ms growth time;
- Only resistive wall modes;
- Damping rates non-uniform low frequency response of the amplifier?
- Fits look very clean, textbook exponential transients;
- Filled to 200 mA, not limited by instabilities;
- Growth time too long, when feedback turns on there is not enough gain to damp the motion.

< ロ > < 同 > < 回 > < 回 >

(Dimtel)

At Fs: G1= 137.054, G2= 0, Ph1= 83.6019, Ph2= 0, Brkpt= 1405, Calib= 0.36.

- Grow/damp at 100 mA, 8 ms growth time;
- Only resistive wall modes;
- Damping rates non-uniform low frequency response of the amplifier?
- Fits look very clean, textbook exponential transients;
- Filled to 200 mA, not limited by instabilities;
- Growth time too long, when feedback turns on there is not enough gain to damp the motion.

- Grow/damp at 100 mA, 8 ms growth time;
- Only resistive wall modes;
- Damping rates non-uniform low frequency response of the amplifier?
- Fits look very clean, textbook exponential transients;
- Filled to 200 mA, not limited by instabilities;
- Growth time too long, when feedback turns on there is not enough gain to damp the motion.

Outline

Introduction

- Motivation
- Overview of Storage Rings
- A Few Examples of Storage Rings
- Coupled-bunch Instabilities
- Feedback Options
- 2 Bunch-by-bunch Feedback
 - Overview
 - Technology

Diagnostics

- Basic Measurements
- Advanced Diagnostics

A .

Parasitic Tune Measurement

- Transverse feedback in DAΦNE operating in the X plane;
- Averaged beam spectrum (lower right) shows a notch;
- This notch is a key to the parasitic tune measurement capability.

Parasitic Tune Measurement

- Transverse feedback in DAΦNE operating in the X plane;
- Averaged beam spectrum (lower right) shows a notch;
- This notch is a key to the parasitic tune measurement capability.

Parasitic Tune Measurement

- Transverse feedback in DAΦNE operating in the X plane;
- Averaged beam spectrum (lower right) shows a notch;
- This notch is a key to the parasitic tune measurement capability.

 Beam response is resonant at the tune frequency;

- Attenuation of detection noise by the feedback is proportional to the loop gain;
- Transfer gain from noise to the feedback input is $\frac{1}{1+L(\omega)}$
- Maximum attenuation at the resonance, thus a notch.

- Beam response is resonant at the tune frequency;
- Attenuation of detection noise by the feedback is proportional to the loop gain;
- Transfer gain from noise to the feedback input is $\frac{1}{1+L(\omega)}$
- Maximum attenuation at the resonance, thus a notch.

- Beam response is resonant at the tune frequency;
- Attenuation of detection noise by the feedback is proportional to the loop gain;
- Transfer gain from noise to the feedback input is ¹/_{1+L(ω)}
- Maximum attenuation at the resonance, thus a notch.

- Beam response is resonant at the tune frequency;
- Attenuation of detection noise by the feedback is proportional to the loop gain;
- Transfer gain from noise to the feedback input is ¹/_{1+L(ω)}
- Maximum attenuation at the resonance, thus a notch.

• Start from computing bunch spectrum;

- Fit model beam/feedback response to the spectrum;
- Repeat for all filled bunches;
- Convert to fractional tune.
- Completely parasitic measurement of bunch-by-bunch tunes.

- Start from computing bunch spectrum;
- Fit model beam/feedback response to the spectrum;
- Repeat for all filled bunches;
- Convert to fractional tune.
- Completely parasitic measurement of bunch-by-bunch tunes.

< 6 b

- Start from computing bunch spectrum;
- Fit model beam/feedback response to the spectrum;
- Repeat for all filled bunches;
- Convert to fractional tune.
- Completely parasitic measurement of bunch-by-bunch tunes.

A (10) > A (10) > A (10)

- Start from computing bunch spectrum;
- Fit model beam/feedback response to the spectrum;
- Repeat for all filled bunches;
- Convert to fractional tune.
- Completely parasitic measurement of bunch-by-bunch tunes.

(4) (5) (4) (5)

- Start from computing bunch spectrum;
- Fit model beam/feedback response to the spectrum;
- Repeat for all filled bunches;
- Convert to fractional tune.
- Completely parasitic measurement of bunch-by-bunch tunes.

★ ∃ ► ★

Using Beam to Measure Impedances

- Advanced Photon Source at Argonne National Laboratory;
- Longitudinal instabilities driven by parasitic higher-order modes in RF cavities;
- Use cavity temperature to scan the impedance across a synchrotron sideband:
 - Mode 36;
 - Mode 144;
 - Mode 146

3 1 4

Using Beam to Measure Impedances

- Advanced Photon Source at Argonne National Laboratory;
- Longitudinal instabilities driven by parasitic higher-order modes in RF cavities;
- Use cavity temperature to scan the impedance across a synchrotron sideband:
 - Mode 36;
 - Mode 144;
 - Mode 146

Using Beam to Measure Impedances

- Advanced Photon Source at Argonne National Laboratory;
- Longitudinal instabilities driven by parasitic higher-order modes in RF cavities;
- Use cavity temperature to scan the impedance across a synchrotron sideband:

э.

- Mode 36;
- Mode 144;
- Mode 146.

Measurement Approach

- Single-bunch acquisition engine captures 96k samples for one bunch together with excitation signal;
- From excitation and response signals, frequency domain transfer function can be estimated.

Measurement Approach

- Single-bunch acquisition engine captures 96k samples for one bunch together with excitation signal;
- From excitation and response signals, frequency domain transfer function can be estimated.

 Time-domain response, horizontal, open loop

 Frequency domain transfer function

- Horizontal
- Vertica
- Longitudinal

- Time-domain response, horizontal, open loop
- Frequency domain transfer function
 - Horizontal
 - Vertical

Longitudinal

(4) (5) (4) (5)

- Time-domain response, horizontal, open loop
- Frequency domain transfer function
 - Horizontal
 - Vertical
 - Longitudinal

- B

- Time-domain response, horizontal, open loop
- Frequency domain transfer function
 - Horizontal
 - Vertical

< 6 b

Longitudinal

- Turn off feedback for bunch 40;
- Apply swept sinusoidal excitation;
- Measure beam transfer function;
- A simple-minded fit of a resonant response;
- Fit a linear combination of 3 resonances;

• • • • • • • • • • • • •

- 5 resonances;
- 7 resonances;
- 9 resonances;
- 11 resonances.

- Turn off feedback for bunch 40;
- Apply swept sinusoidal excitation;
- Measure beam transfer function;
- A simple-minded fit of a resonant response;
- Fit a linear combination of 3 resonances;

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- 5 resonances;
- 7 resonances;
- 9 resonances;
- 11 resonances.

- Turn off feedback for bunch 40;
- Apply swept sinusoidal excitation;
- Measure beam transfer function;
- A simple-minded fit of a resonant response;
- Fit a linear combination of 3 resonances;

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- 5 resonances;
- 7 resonances;
- 9 resonances;
- 11 resonances.

- Turn off feedback for bunch 40;
- Apply swept sinusoidal excitation;
- Measure beam transfer function;
- A simple-minded fit of a resonant response;
- Fit a linear combination of 3 resonances;

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- 5 resonances;
- 7 resonances;
- 9 resonances;
- 11 resonances.

Feedback

- Turn off feedback for bunch 40;
- Apply swept sinusoidal excitation;
- Measure beam transfer function;
- A simple-minded fit of a resonant response;
- Fit a linear combination of 3 resonances;

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- 5 resonances;
- 7 resonances;
- 9 resonances;
- 11 resonances.

Feedback

- Turn off feedback for bunch 40;
- Apply swept sinusoidal excitation;
- Measure beam transfer function;
- A simple-minded fit of a resonant response;
- Fit a linear combination of 3 resonances;

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- 5 resonances;
- 7 resonances;
- 9 resonances;
- 11 resonances.

Feedback

- Turn off feedback for bunch 40;
- Apply swept sinusoidal excitation;
- Measure beam transfer function;
- A simple-minded fit of a resonant response;
- Fit a linear combination of 3 resonances;

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- 5 resonances;
- 7 resonances;
- 9 resonances;
- 11 resonances.

130

135

Frequency (kHz)

140

145

150

125

^{shase} (deg)

-100

-150

-200 L

Feedback

- For stable operation of modern storage rings, control of coupled-bunch instabilities is a must;
- Bunch-by-bunch feedback is a powerful and well understood tool for such control;
- Good understanding of beam dynamics and feedback control is needed to successfully operate these systems;
- Digital signal processing techniques in modern bunch-by-bunch feedback systems enable a wealth of beam and system diagnostics.

- For stable operation of modern storage rings, control of coupled-bunch instabilities is a must;
- Bunch-by-bunch feedback is a powerful and well understood tool for such control;
- Good understanding of beam dynamics and feedback control is needed to successfully operate these systems;
- Digital signal processing techniques in modern bunch-by-bunch feedback systems enable a wealth of beam and system diagnostics.

< ロ > < 同 > < 回 > < 回 >

- For stable operation of modern storage rings, control of coupled-bunch instabilities is a must;
- Bunch-by-bunch feedback is a powerful and well understood tool for such control;
- Good understanding of beam dynamics and feedback control is needed to successfully operate these systems;
- Digital signal processing techniques in modern bunch-by-bunch feedback systems enable a wealth of beam and system diagnostics.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- For stable operation of modern storage rings, control of coupled-bunch instabilities is a must;
- Bunch-by-bunch feedback is a powerful and well understood tool for such control;
- Good understanding of beam dynamics and feedback control is needed to successfully operate these systems;
- Digital signal processing techniques in modern bunch-by-bunch feedback systems enable a wealth of beam and system diagnostics.

Acknowledgments

- I want to thank Santa Clara Valley Chapter of IEEE CSS for inviting me;
- Big thanks to my (former) colleagues at Stanford Linear Accelerator for their wisdom, willingness to talk, and to offer advice and encouragement;
- A special thanks to my Ph.D. adviser and friend, John Fox, who taught me pretty much everything I know about particle accelerators;
- I also should mention physicists and engineers at many machines around the world who directly or indirectly contributed to measurements presented here.

イロト イ団ト イヨト イヨト

Measured from setpoint to the cavity probe;

- Feedback block in open loop has no dynamics, just gain and phase shift;
- Open loop cavity response;
- Fit resonator model to extract gain, loaded *Q*, detuning, delay, phase shift at ω_{rf};
- Faster than expected gain roll-off above the resonance.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- Measured from setpoint to the cavity probe;
- Feedback block in open loop has no dynamics, just gain and phase shift;
- Open loop cavity response;
- Fit resonator model to extract gain, loaded *Q*, detuning, delay, phase shift at ω_{rf};
- Faster than expected gain roll-off above the resonance.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- Measured from setpoint to the cavity probe;
- Feedback block in open loop has no dynamics, just gain and phase shift;
- Open loop cavity response;
- Fit resonator model to extract gain, loaded *Q*, detuning, delay, phase shift at ω_{rf};
- Faster than expected gain roll-off above the resonance.

- Measured from setpoint to the cavity probe;
- Feedback block in open loop has no dynamics, just gain and phase shift;
- Open loop cavity response;
- Fit resonator model to extract gain, loaded *Q*, detuning, delay, phase shift at ω_{rf};
- Faster than expected gain roll-off above the resonance.

- Measured from setpoint to the cavity probe;
- Feedback block in open loop has no dynamics, just gain and phase shift;
- Open loop cavity response;
- Fit resonator model to extract gain, loaded *Q*, detuning, delay, phase shift at ω_{rf};
- Faster than expected gain roll-off above the resonance.

A D b 4 A b

- Wider sweep reveals a parasitic mode at 2.8 MHz above the π mode;
- Negative feedback for the π mode is positive for the parasitic mode;
- This positive feedback limits direct loop gain;
- The simplest way around the issue is to use digital delay to equalize the modal phase shifts (230 ns).

- Wider sweep reveals a parasitic mode at 2.8 MHz above the π mode;
- Negative feedback for the π mode is positive for the parasitic mode;
- This positive feedback limits direct loop gain;
- The simplest way around the issue is to use digital delay to equalize the modal phase shifts (230 ns).

< ロ > < 同 > < 回 > < 回 >

- Wider sweep reveals a parasitic mode at 2.8 MHz above the π mode;
- Negative feedback for the π mode is positive for the parasitic mode;
- This positive feedback limits direct loop gain;
- The simplest way around the issue is to use digital delay to equalize the modal phase shifts (230 ns).

- Wider sweep reveals a parasitic mode at 2.8 MHz above the π mode;
- Negative feedback for the π mode is positive for the parasitic mode;
- This positive feedback limits direct loop gain;
- The simplest way around the issue is to use digital delay to equalize the modal phase shifts (230 ns).

A B F A B F

Proportional Loop Gain and Delay

- Set up minimum delay and equalized transfer functions for identical 3 dB closed-loop peaking.
 - Minimum delay: peak gain at RF is -9.2 dB, gain margin 12.3 dB
 - Equalized: peak gain at RF is +8 dB, gain margin 11.8 dB, phase margin 88 degrees

 More sophisticated parasitic mode suppression methods can improve the performance only slightly, around 2-3 dB.

Proportional Loop Gain and Delay

- Set up minimum delay and equalized transfer functions for identical 3 dB closed-loop peaking.
 - Minimum delay: peak gain at RF is -9.2 dB, gain margin 12.3 dB
 - Equalized: peak gain at RF is +8 dB, gain margin 11.8 dB, phase margin 88 degrees

 More sophisticated parasitic mode suppression methods can improve the performance only slightly, around 2-3 dB.

Proportional Loop Gain and Delay

- Set up minimum delay and equalized transfer functions for identical 3 dB closed-loop peaking.
 - Minimum delay: peak gain at RF is -9.2 dB, gain margin 12.3 dB
 - Equalized: peak gain at RF is +8 dB, gain margin 11.8 dB, phase margin 88 degrees

 More sophisticated parasitic mode suppression methods can improve the performance only slightly, around 2-3 dB.

Measured from setpoint to the error signal;

- Quantifies closed-loop disturbance rejection vs. frequency offset from f_{RF};
- Proportional and integrator loops produce high rejection at low frequencies;
- Magnitude on log-log scale, field setpoint of 1 MV.

- Measured from setpoint to the error signal;
- Quantifies closed-loop disturbance rejection vs. frequency offset from f_{RF};
- Proportional and integrator loops produce high rejection at low frequencies;
- Magnitude on log-log scale, field setpoint of 1 MV.

- Measured from setpoint to the error signal;
- Quantifies closed-loop disturbance rejection vs. frequency offset from f_{RF};
- Proportional and integrator loops produce high rejection at low frequencies;
- Magnitude on log-log scale, field setpoint of 1 MV.

- Measured from setpoint to the error signal;
- Quantifies closed-loop disturbance rejection vs. frequency offset from f_{RF};
- Proportional and integrator loops produce high rejection at low frequencies;
- Magnitude on log-log scale, field setpoint of 1 MV.