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0 Setup

@ System Updates



SE)
oe

Work Summary

@ Updated all 3iGp12 units to
the latest gateware/software
release;

@ Performed timing offset
calibrations, should simplify
future updates;

@ Built an interface cable to
enable monitoring of
longitudinal power amplifiers
(forward/reflected power, fault,
RF state).
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© Beam Studies
@ Single Bunch Stability
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Robinson stability

@ Cavity tuning loop — reflected
power is minimum at
15 degrees tuning angle;
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Robinson stability

@ Cavity tuning loop — reflected
power is minimum at
15 degrees tuning angle;

@ Main RF cavity tuning was
s Robinson unstable, limited
single bunch current to 11 mA,
B 15 mA at the new angle;

Forward power (kW)
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Robinson stability

@ Cavity tuning loop — reflected
power is minimum at
15 degrees tuning angle;

@ Main RF cavity tuning was
Robinson unstable, limited
single bunch currentto 11 mA,

B 15 mA at the new angle;

@ At 40 mA forward power
minimum is at 0 degrees —
measurement of cavity
forward phase rotates with

current?

Forward power (kW)

-5 10 -5 15 20 25

[) 5 10
‘Tuning angle offset (degrees)
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© Beam Studies

@ Longitudinal Instabilities
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General Situation

@ We see strong longitudinal
3 . coupled-bunch instabilities at
lll lll Ml Hl’ A“ very low beam currents (5-10

R T I mA);
- e Both dipole and quadrupole;
. @ Long bunch in the HLS — can
act on quadrupole instabilities;

20 40 60 8 100 120 140 160 180 200 220
KHz

Dipole phase 60.0 deg, slope -18.5 deg/kHz; Quadrupole phase 100.0 deg, slope ~13.5 deglkHz
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General Situation

@ We see strong longitudinal
T” ?] T lTh6 I T; coupled-bunch instabilities at
lll lll M Hl’ “ very low beam currents (5-10
e e e e e mA);

- @ Both dipole and quadrupole;
e @ Long bunch in the HLS — can
o act on quadrupole instabilities;

@ Dual band feedback filter is

, tailored to provide appropriate
£ , gains and phases at
o synchrotron and quadrupole

frequencies. _
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Dipole Grow/Damp

a) Osc. Envelopes in Time Domain b) Evolution of Modes
4. A 154
& & 10|
g2 ¢
o %
40 Yy e
5
Bunch No. 0 Time (ms) Mode No. 00 Time (ms)
) Oscillation freqs (pre-brkpt) d) Growth Rates (pre-brkpt)
30.
e
s @ Very fast growth rates for
osn| — T 2 . . e
= dipole instabilities;
g 30577, &
30.577|
30.
128 13 132 13.4 128 13 132 134
30.7225,
£ 307215} ——T— Z o
2 30721 =
g o718
§ 307205 &
g )
30.72] ——
-2.5)

Gliipgie

(



Dipole Grow/Damp

a) Osc. Envelopes in Time Domain

b) Evolution of Modes

134

134

0
5
Bunch No. Time (ms) ModeNo. 070 Time (ms)
©) Oscillation freqs (pre-brkpt) d) Growth Rates (pre-brkpl)
305772,
77 —_——
Lo s
] —_— 7
£ a0s771 g
£ 305771 =1
§ 30577 &
& 05
30577
30
28 13 182 184 128 18 182
Mode No. Mode No.
e) Oscilltion freqs (post-brkpl) 1) Growth Rates (post-brkpt)
307225,
30722 05
£ s07215| ——— 7 oo
2 30721 =
H P
§ a0.7208 i,
g -
3072 —
25
307
28 1 B4 128 e 1
Mode No. Mode No.

Beam Studies
[e]e] Tele]e]

@ Very fast growth rates for
dipole instabilities;

@ See eigenmode 13 —
N x frr + 58.9 MHz;
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Dipole Grow/Damp

jul3014/180833 Data, Fit and Error for Mode #13

|

@ Very fast growth rates for
dipole instabilities;

o Ve @ See eigenmode 13 —
e N x frr + 58.9 MHz;
@ Excellent fit to growth and
damping.
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Quadrupole Grow/Damp

Filters for quadrupole grow/damp

Dual band fiter
Quadrupole open-loop
F

20 -—-
2F

Gain (dB)
°

] @ A filter to notch out
] quadrupole feedback;

200 250

100 150
Frequency (kHz)

Dual band fiter
Quadrupole open-loop
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Quadrupole G

a) Osc. Envelopes in Time Domain b) Evolution of Modes

A A e ) @ A filter to notch out
o a5 OECiation fregs (pre-brkpt) d) Growth Rates (pre-brkpt) : quadrupole feedback’
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Quadrupole Grow/Damp

[e]o]e] lele]

jul3014/203046 Data, Fit and Error for Mode #13
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@ A filter to notch out
quadrupole feedback;

@ Nice growth and damping
of quadrupole oscillation;

@ Textbook exponential
growth;
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Quadrupole Grow/Damp

a) Osc. Envelopes in Time Domain b) Evolution of Modes

N ‘, voiore, 0 Wms,/ @ A filter to notch out
quadrupole feedback;
@ Nice growth and damping
of quadrupole oscillation;
03 @ Textbook exponential
growth;

A @ At the same time, dipole
motion is fully suppressed.

(] 5 10 15 20
Mode No.
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Dipole Growth Rates vs. Beam Current

HLS: dipole grow/damps, mode 13, = 0.12 ms™, slope = 0.09 ms /mA

)

Growth rate (ms™)
I S S
\

e ] @ Steep slope, at 100 mA
/ S0 I growth time of 4
T T synchrotron periods;

T T SR R {@mm gﬁ/
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Dipole Growth Rates vs. Beam Current

HLS: dipole grow/damps, mode 13, = 0.01 ms™, slope = 0.09 ms /mA
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@ Steep slope, at 100 mA
growth time of 4
synchrotron periods;

@ July 31 measurements in
an even fill;
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Dipole Growth Rates vs. Beam Current

HLS: dipole grow/damps, mode 13, = 0.01 ms™, slope = 0.09 ms /mA

s7)
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@ Steep slope, at 100 mA

growth time of 4
synchrotron periods;

@ July 31 measurements in

an even fill;

@ Estimated effective

impedance of 232 k.
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Quadrupole Growth Rates vs. Beam Current

Growth rate (ms™)

HLS: quadrupole grow/damps, mode 13, = ~0.26 ms™, slope = 0.04 ms™YmA
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@ Steep slope, at 100 mA

growth time of 4
synchrotron periods;
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Quadrupole Growth Rates vs. Beam Current

HLS: quadrupole grow/damps, mode 13, A, = 0.37 ms™, slope = 0.02 ms™"/mA
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@ Steep slope, at 100 mA
growth time of 4
synchrotron periods;

@ July 31 measurements in
an even fill;
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Quadrupole Growth Rates vs. Beam Current

HLS: quadrupole grow/damps, mode 13, A, = 0.37 ms™, slope = 0.02 ms™"/mA
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@ Steep slope, at 100 mA
growth time of 4
synchrotron periods;

@ July 31 measurements in
an even fill;

@ Possibly lower growth rates
with a gap.
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© Beam Studies

@ Possible Impedance Sources

(
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Driving Impedance Discussion

@ Very fast growth rates of dipole mode (1.5 ms~') at 20 mA
multibunch (even-fill pattern) implies large narrowband
impedance;

@ Very fast growth rates of quadrupole mode (0.75 ms—1) at
20 mA multibunch (even-fill pattern) implies large
narrowband impedance;

@ We spent some time looking for sources:

e Main RF
@ Harmonic RF
@ Other unknown resonant structure
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Driving Impedance Discussion Continued

@ Large narrowband impedance also implies possible strong
heating
e cavities are water-cooled
e no other significant vacuum activity observed correlated

with HOM heating (using special fill pattern to excite 13"
revolution harmonic)
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Driving Impedance Discussion Continued

@ Large narrowband impedance also implies possible strong
heating
e cavities are water-cooled
e no other significant vacuum activity observed correlated
with HOM heating (using special fill pattern to excite 13"
revolution harmonic)

@ Main RF cavity

@ no strong resonance observed in main cavity probe
corresponding to observed beam mode 13
(N x frg + 13 X fey)

e significant HOM activity observed in coaxial feed to main
cavity. Unusual but no evidence linking it to instabilities.
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Driving Impedance Discussion Continued

@ Large narrowband impedance also implies possible strong
heating
e cavities are water-cooled
e no other significant vacuum activity observed correlated
with HOM heating (using special fill pattern to excite 13"
revolution harmonic)
@ Main RF cavity

@ no strong resonance observed in main cavity probe
corresponding to observed beam mode 13
(N x frp + 13 X fey)
e significant HOM activity observed in coaxial feed to main
cavity. Unusual but no evidence linking it to instabilities.
@ Other structures (LFB, TFB kickers; striplines, etc.)

e significant HOM activity. No evidence linking HOMSs to

instabilities. @r@
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Harmonic Cavity

T | @ Observed single
fundamental mode. No
HOMs!

@ Magnitudes of revolution
harmonics — estimate
cavity wr and Q.

@ Tuned 392 kHz above

. 4 x frr, Q = 1600.

Magnitude (arb units)
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Forward Power Coupler, Main RF

g Type: Log-Pwr
TNO: Close Ly Trig: Free Run Avg|Hold:>100/100
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Page Setup...

L

Start 104 MHz Stop 5.000 GHz
Res BW 3.0 MHz VBW 3.0 MHz Sweep 8.200 ms {1001 pts)




Setup Beam Studies Summary
[ [oleTeYe] YoloX

Forward Power Coupler, Main RF

B Agilent Spectrum An:

X Frequenc:

Stop Freq 2.000000000 GHz Avg Type: Log-Pwr ql Y

PNO: Close Ly Trig: Free Run AvglHold:>100/100 ™
IFGain:Low #Atten: 20 dB

Mkr1 1.107 7 GHz Auto Tune
19 gBIdiv Ref 0.00 dBm 4189 dBra

CenterFreq|
1.052000000 GHz

StartFreq
104.000000 MHz,

Stop Freq
2.000000000 GHz,

Freq Offset,
0 Hz|

Start 104.0 MHz Stop 2.0000 GHz
Res BW 3.0 MHz VBW 3.0 MHz Sweep 1.000 ms (1001 pts)
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@ Uneven Fills

@ Longitudinal Measurements
@ Vertical Measurements
@ Lifetime
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Fill Patterns and Coupled-bunch Instabilities

HLS: Uniform fill pattern
T T

Ty ] @ Uneven fill patterns can
] reduce or increase growth
1 rates;

o 5 10 15 20 25 30 35 a0 a5
Bunch number

FET amplitude
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Fill Patterns and Coupled-bunch Instabilities

HLS: Uniform fill pattern
T T

Ty ] @ Uneven fill patterns can
] reduce or increase growth
1 rates;

I TO S S @ Theory by Shyam
Prabhakar (SLAC-R-554);
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Fill Patterns and Coupled-bunch Instabilities

HLS: Uniform fill pattern
T T

Ty ] @ Uneven fill patterns can
] reduce or increase growth
1 rates;

I TO S S @ Theory by Shyam
Prabhakar (SLAC-R-554);

@ To damp mode 13, couple
itto -13 (32);
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Fill Patterns and Coupled-bunch Instabilities

HLS: Mode 19 fill pattern

@ Uneven fill patterns can

reduce or increase growth

‘ rates;

@ Theory by Shyam
Prabhakar (SLAC-R-554);

@ To damp mode 13, couple
itto -13 (32);

@ Fill pattern to maximize
revolution harmonic 19
(32 —13).
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Observations in Rev19 Fill Pattern

a) Osc. Envelopes in Time Domain b) Evolution of Modes

@ No quadrupole instabilities
below 150 mA;

Mean Mode Ampiitudes

(] 5 10 15 20 25 30 35 40
Mode No.

(
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Observations in Rev19 Fill Pattern

a) Osc. Envelopes in Time Domain b) Evolution of Modes

@ No quadrupole instabilities
below 150 mA;

. Mean Mode Aptuces @ Mode 13 is stable;
1.5

&

9 1

g

0.5

I T N I

Mode No.
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Observations in Rev19 Fill Pattern

a) Osc. Envelopes in Time Domain b) Evolution of Modes

@ No quadrupole instabilities
below 150 mA;

s @ Mode 13 is stable;
s”| @ Dominated by mode 28;
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Observations in Rev19 Fill Pattern

a) Osc. Envelopes in Time Domain b) Evolution of Modes

= =z
Bunch No. 0 Time (ms) Mode No. 0o Time (ms)

- @ No quadrupole instabilities
o M e S R below 150 mMA;

pe | @ Mode 13 is stable;

I T R G @ Dominated by mode 28;
= @ Growth rate is 30% slower at
s | B 20 mA vs. even fill.

28
Mode No.

(
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Longitudinal Growth Rates vs. Beam Current

HLS: dipole grow/damps, mode 28, A, = 0.35 ms™, slope = 0.04 ms™"/mA

@ Half the slope of mode 13 in
//'/ : even filling pattern;
=

Frequency (kHz)

0 20 40 60 8 100 120 140 160 180 200
Beam current (mA)
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Longitudinal Growth Rates vs. Beam Current

HLS: dipole grow/damps, mode 28, A, = 0.35 ms™, slope = 0.04 ms™"/mA

. — @ Half the slope of mode 13 in
: A ‘ even filling pattern;

@ Still quite fast, limit around
e 160 mA;

Frequency (kHz)

0 20 40 60 8 100 120 140 160 180 200
Beam current (mA)
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Longitudinal Growth Rates vs. Beam Current

HLS: dipole grow/damps, mode 28, A, = 0.05 ms ™, siope = 0.05 ms™"/mA

© July31
+  August 1] //

| = @ Half the slope of mode 13 in
el ~ even filling pattern;

i @ Still quite fast, limit around
Beam current (mA) 1 60 mA;

— @ Fast growth rates — a lot of
i [ ) scatter;

Growth rate (ms™)
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Longitudinal Growth Rates vs. Beam Current

Growth rate (ms™)
N w s 0 oy m e

Frequency (kHz)

HLS: dipole grow/damps, mode 28, A, = 0.05 ms ™, siope = 0.05 ms™"/mA

© July31
+  August 1]

80 100 120 140 160 180 200
Beam current (MA)

0 July3l
+  August1|

120 140 160 180 200

60 8 100
Beam current (mA)

@ Half the slope of mode 13 in
even filling pattern;

@ Still quite fast, limit around
160 mA;

@ Fast growth rates — a lot of
scatter;

@ Somewhere between an even
fill and this fill pattern is the
ideal one.
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Vertical Grow/Damp Measurements

a) Osc. Envelopes in Time Domain

b) Evolution of Modes
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@ Mode -1 is unstable
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Vertical Grow/Damp Measuremen

a) Osc. Envelopes in Time Domain b) Evolution of Modes

1
Lol
i . .
[ @ Mode -1 is unstable;
|
TR, . T
S S, @ Likely both resistive wall and
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Vertical Grow/Damp Measurements

a) Osc. Envelopes in Time Domain

Time (ms)

) Oscillation freqs (pre-brkpt)

b) Evolution of Modes

ModeNo. 0 0

Time (ms)

d) Growth Rates (pre-brkpt)
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£ 839635 7 s
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§ 830.625 é,
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839,
45 44 445 435 a4
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842.2 - 0,
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w
842 0| —————
841
45 445 435

44
Mode No

44
Mode No.

445

@ Mode -1 is unstable;

@ Likely both resistive wall and
ions;

@ lon instabilities saturate
quickly;

(
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Vertical Grow/Damp Measurements

aug0114/110037 Data, Fit and Error for Mode #44

: @ Mode -1 is unstable;

n ‘ ] @ Likely both resistive wall and
ions;

@ lon instabilities saturate
quickly;

@ Initial growth is reasonably
exponential;
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Vertical Grow/Damp Measurements

a) Osc. Envelopes in Time Domain b) Evolution of Modes

@ Mode -1 is unstable;

L o 2 - . . .
Brte 0 e Mo 00 Tmems @ Likely both resistive wall and
- ¢) Oscillation freqs (pre-brkpt) d) Growth Rates (pre-brkpt) io n S ;
83964 b ———— . agags
@ lon instabilities saturate
2 3063 = . .
F aonoas quickly;
839.62 1 ' .
- il @ Initial growth is reasonably
Mode No. Mode No. .
e) Oscillation fregs (post-brkpt) f) Growth Rates (post-brkpt) eX po n e ntl aI ;
842.25 - 0
Lo - @ 77 turns damping time!
s 842.1 j o0
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Vertical Grow/Damp Measurements

HLS: Vertical grow/damps, mode ~1,A, = 5.05 ms ", slope = 0.01 ms™/mA

65 ¢ 1

T I @ Mode -1 is unstable;

S o o | @ Likely both resistive wall and
— . | ions;
. ! @ lon instabilities saturate

0 20 40 60 80 100 120 140 160 180 200
Beam current (mA)

quickly;
@ Initial growth is reasonably

] exponential;
S . O @ 77 turns damping time!
. [ . « @ Need more measurements vs.
beam current.

0 20 a0 60 aa‘oeamciégm(;/é)u To 10 10 200 {rgm@
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Lifetime and Feedback at 110 mA

@ Feedback in all planes:
2.2 hours;
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Lifetime and Feedback at 110 mA

@ Feedback in all planes:
2.2 hours;

@ Yoff, Xand Zon: 5.5
hours;
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Lifetime and Feedback at 110 mA

@ Feedback in all planes:
2.2 hours;

@ Yoff, Xand Zon: 5.5
hours;

@ Zoff, Xand Y on: 4.2
hours;




Beam Studies

O0000e

Lifetime and Feedback at 110 mA

@ Feedback in all planes:
2.2 hours;

@ Yoff, Xand Zon: 5.5
hours;

@ Zoff, Xand Y on: 4.2
hours;

@ All off: 6 hours,
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Summary

@ Longitudinal coupled-bunch instabilities are very strong,
likely driven by a narrowband impedance;
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@ Longitudinal coupled-bunch instabilities are very strong,
likely driven by a narrowband impedance;

@ Growth rates at 100 mA in an even fill pattern are faster
then theoretically achievable feedback damping rates;
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Summary

@ Longitudinal coupled-bunch instabilities are very strong,
likely driven by a narrowband impedance;

@ Growth rates at 100 mA in an even fill pattern are faster
then theoretically achievable feedback damping rates;

@ Can partially mitigate the instability with uneven fill
patterns;



Summary

Summary

@ Longitudinal coupled-bunch instabilities are very strong,
likely driven by a narrowband impedance;

@ Growth rates at 100 mA in an even fill pattern are faster
then theoretically achievable feedback damping rates;

@ Can partially mitigate the instability with uneven fill
patterns;
@ Long term solution — find the impedance and reduce it!
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