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Work Summary

Updated all 3 iGp12 units to
the latest gateware/software
release;
Performed timing offset
calibrations, should simplify
future updates;
Built an interface cable to
enable monitoring of
longitudinal power amplifiers
(forward/reflected power, fault,
RF state).
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Robinson stability
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Cavity tuning loop — reflected
power is minimum at
15 degrees tuning angle;
Main RF cavity tuning was
Robinson unstable, limited
single bunch current to 11 mA,
15 mA at the new angle;
At 40 mA forward power
minimum is at 0 degrees —
measurement of cavity
forward phase rotates with
current?
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General Situation
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We see strong longitudinal
coupled-bunch instabilities at
very low beam currents (5–10
mA);
Both dipole and quadrupole;
Long bunch in the HLS→ can
act on quadrupole instabilities;
Dual band feedback filter is
tailored to provide appropriate
gains and phases at
synchrotron and quadrupole
frequencies.
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Dipole Grow/Damp

Very fast growth rates for
dipole instabilities;
See eigenmode 13 —
N × fRF + 58.9 MHz;
Excellent fit to growth and
damping.
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Dipole Grow/Damp
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Very fast growth rates for
dipole instabilities;
See eigenmode 13 —
N × fRF + 58.9 MHz;
Excellent fit to growth and
damping.
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Quadrupole Grow/Damp
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Dual band filter
Quadrupole open−loop

A filter to notch out
quadrupole feedback;
Nice growth and damping
of quadrupole oscillation;
Textbook exponential
growth;
At the same time, dipole
motion is fully suppressed.
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Quadrupole Grow/Damp
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A filter to notch out
quadrupole feedback;
Nice growth and damping
of quadrupole oscillation;
Textbook exponential
growth;
At the same time, dipole
motion is fully suppressed.
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Quadrupole Grow/Damp
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Dipole Growth Rates vs. Beam Current
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HLS: dipole grow/damps, mode 13, λ
0
 = 0.12 ms−1, slope = 0.09 ms−1/mA
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Steep slope, at 100 mA
growth time of 4
synchrotron periods;
July 31 measurements in
an even fill;
Estimated effective
impedance of 232 kΩ.



Setup Beam Studies Summary

Dipole Growth Rates vs. Beam Current

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9

Beam current (mA)

G
ro

w
th

 r
at

e 
(m

s−
1 )

HLS: dipole grow/damps, mode 13, λ
0
 = 0.01 ms−1, slope = 0.09 ms−1/mA

 

 

0 10 20 30 40 50 60 70 80 90 100
30.45

30.5

30.55

30.6

Beam current (mA)

F
re

qu
en

cy
 (

kH
z)

 

 

July 30
July 31

July 30
July 31

Steep slope, at 100 mA
growth time of 4
synchrotron periods;
July 31 measurements in
an even fill;
Estimated effective
impedance of 232 kΩ.
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Dipole Growth Rates vs. Beam Current
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growth time of 4
synchrotron periods;
July 31 measurements in
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Estimated effective
impedance of 232 kΩ.
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Quadrupole Growth Rates vs. Beam Current
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Steep slope, at 100 mA
growth time of 4
synchrotron periods;
July 31 measurements in
an even fill;
Possibly lower growth rates
with a gap.



Setup Beam Studies Summary

Quadrupole Growth Rates vs. Beam Current
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Steep slope, at 100 mA
growth time of 4
synchrotron periods;
July 31 measurements in
an even fill;
Possibly lower growth rates
with a gap.
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Quadrupole Growth Rates vs. Beam Current
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July 30
July 31

July 30
July 31

Steep slope, at 100 mA
growth time of 4
synchrotron periods;
July 31 measurements in
an even fill;
Possibly lower growth rates
with a gap.
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Driving Impedance Discussion

Very fast growth rates of dipole mode (1.5 ms−1) at 20 mA
multibunch (even-fill pattern) implies large narrowband
impedance;
Very fast growth rates of quadrupole mode (0.75 ms−1) at
20 mA multibunch (even-fill pattern) implies large
narrowband impedance;
We spent some time looking for sources:

Main RF
Harmonic RF
Other unknown resonant structure
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Driving Impedance Discussion Continued

Large narrowband impedance also implies possible strong
heating

cavities are water-cooled
no other significant vacuum activity observed correlated
with HOM heating (using special fill pattern to excite 13th

revolution harmonic)
Main RF cavity

no strong resonance observed in main cavity probe
corresponding to observed beam mode 13
(N × fRF + 13× frev)
significant HOM activity observed in coaxial feed to main
cavity. Unusual but no evidence linking it to instabilities.

Other structures (LFB, TFB kickers; striplines, etc.)
significant HOM activity. No evidence linking HOMs to
instabilities.
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Harmonic Cavity
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SA data
Fit Observed single

fundamental mode. No
HOMs!
Magnitudes of revolution
harmonics→ estimate
cavity ωr and Q.
Tuned 392 kHz above
4× fRF, Q = 1600.
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Forward Power Coupler, Main RF
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Longitudinal Feedback Kicker
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STL3 Stripline
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Fill Patterns and Coupled-bunch Instabilities
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Prabhakar (SLAC-R-554);
To damp mode 13, couple
it to -13 (32);
Fill pattern to maximize
revolution harmonic 19
(32− 13).
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Fill Patterns and Coupled-bunch Instabilities
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Observations in Rev19 Fill Pattern

No quadrupole instabilities
below 150 mA;
Mode 13 is stable;
Dominated by mode 28;
Growth rate is 30% slower at
20 mA vs. even fill.
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Longitudinal Growth Rates vs. Beam Current
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 = 0.35 ms−1, slope = 0.04 ms−1/mA
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fill and this fill pattern is the
ideal one.
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Longitudinal Growth Rates vs. Beam Current
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Longitudinal Growth Rates vs. Beam Current
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Vertical Grow/Damp Measurements

Mode -1 is unstable;
Likely both resistive wall and
ions;
Ion instabilities saturate
quickly;
Initial growth is reasonably
exponential;
77 turns damping time!
Need more measurements vs.
beam current.
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Vertical Grow/Damp Measurements
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Mode -1 is unstable;
Likely both resistive wall and
ions;
Ion instabilities saturate
quickly;
Initial growth is reasonably
exponential;
77 turns damping time!
Need more measurements vs.
beam current.
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Vertical Grow/Damp Measurements
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Lifetime and Feedback at 110 mA

Feedback in all planes:
2.2 hours;
Y off, X and Z on: 5.5
hours;
Z off, X and Y on: 4.2
hours;
All off: 6 hours,
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then theoretically achievable feedback damping rates;
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patterns;
Long term solution — find the impedance and reduce it!
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