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LLRF9 Bench Test Stand

» Cavity filter with 90 kHz
bandwidth;

» Long cable for loop
delay;

» Two directional couplers
for monitoring

> Forward power;
> Reflected power.
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Field Control Loop

Open/closed loop control
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» Single cavity or vector sum of
two;

» Reference phase is
compensated in real-time;

» Double rate DAC drive;

» 512-point amplitude and phase
profiles;

» Excitation input for built-in

» Proportional (direct) and network analyzer.

integral loops;




Network Analyzer

» High resolution (1024 point)
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» High resolution (1024 point)
swept analyzer;

[ ID-LLRF:BRD1 [HEte | [ExiT | . . .
—r ; > Adjustable excitation level;
e B

200X INTEGRATION LENOTH | 2097152

8 & 88
- I,

75w ToE | sess s |

e oo 7T 30 20 -1 [] 10 2 a
Frequency offset (kHz)

MINDUN OFFSET 0.0272 12

Phase

Deur o ] |

/
f

T T
20 10 0 1 2 3

Frequency offsst (kHz)




Network Analyzer

» High resolution (1024 point)
swept analyzer;
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Network Analyzer

» High resolution (1024 point)
swept analyzer;

> Adjustable excitation level;

o > Fast sweep times with
J proprietary carrier suppression
0 N s algorithm;

= » Multiple probe points within the
system:
= > Cavity probe;
- » Cavity sum;
b ) > Error signal;

» Drive output.

» Spectrum analyzer mode with
excitation disabled.
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Open Loop Transfer Function

Gain = 0.259, Q = 5597.01, (w, - w,) = 0.25 kHz

Gain (dB)

» Measured from setpoint to the
cavity probe;

S e 7 b Feedback block in open loop has

no dynamics, just gain and phase

shift;
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Closed Loop Transfer Functions

» Measured from setpoint to the error
signal, S(w) =1/(1 + H(w));
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Closed Loop Transfer Functions

Direct gain = 2.02, phase = 363.4 deg, (0.975/0.996 setting/ft)

2500 400 300 200 100 0 100 200 300 400 500
Frequency offset (kHz)

Integral gain = 1.000/1.032 setting/fit, phase = 5.4 deg

(degrees)

Phase

T500 -400 -300 -200 -100 O 100 200 300 400 500
Frequency offset (kHz)

» Measured from setpoint to the error
signal, S(w) =1/(1 + H(w));

» Shows attenuation at frequencies
where feedback has gain;

> Fit closed-loop response (using
open loop model);




Closed Loop Transfer Functions

Direct gain = 2.02, phase = 363.4 deg, (0.975/0.996 setting/ft)

» Measured from setpoint to the error
signal, S(w) =1/(1 + H(w));

» Shows attenuation at frequencies
where feedback has gain;

o > Fit closed-loop response (using

200 300 400 500 open Ioop model),

» Perturbations at the input of the
cavity should be rejected with the
same transfer function;
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Closed Loop Transfer Functions

» Measured from setpoint to the error
signal, S(w) =1/(1 + H(w));
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Wide span;
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> Fit closed-loop response (using
open loop model);
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Wide span;
» Proportional and integral, much
higher rejection at low frequencies;




Closed Loop Transfer Functions

» Measured from setpoint to the error
signal, S(w) =1/(1 + H(w));
» Shows attenuation at frequencies
= ‘ ‘ ) where feedback has gain;

—— USB model|

> Fit closed-loop response (using
open loop model);
» Perturbations at the input of the

cavity should be rejected with the
same transfer function;

1S(w)| (dB)
3

» Proportional only;

ousL?Z(Hz) ' ! » Wlde Span’
» Proportional and integral, much
higher rejection at low frequencies;

» At small offsets.




Closing the Loop with SPEARS Data
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» Extracted model can be used to
estimate disturbance suppression
under LLRF9 control;
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Closing the Loop with SPEARS Data

Setpoint and excitation

Disturbances

+

Error

Feedback

-| RF

| cavity
Cavity field probe

Extracted model can be used to
estimate disturbance suppression
under LLRF9 control;

Start with SPEARS3 cavity probe
signal (open-loop); shift;

Filter the signal through S(w) to
compute residual modulation;
Add mean value to estimate
closed-loop cavity probe signal.




High Gain Case
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» SPEARS3 data: open loop and
closed loop;
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» SPEARS data: open loop and
closed loop;

» Proportional gain 2, integral 219 at
1 kHz; shift;




High Gain Case
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H|gh Gain Case
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» SPEARS3 data: open loop and
closed loop;

» Proportional gain 2, integral 219 at
1 kHz; shift;

» Step response;
» Steady state;




High Gain Case

std=27.9,8.0

x10°

u » SPEARS3 data: open loop and
R T * closed loop;
! . L 2;0 2‘57 » Proportional gain 2, integral 219 at
e 1 kHz; shift;
» Step response;

Closed loop.

sl » Steady state;
» Closed loop comparison: existing
system and LLRF9.
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Low Gain Case

‘ ‘ ‘ » High gain setup runs into trouble
=i | under heavy beam loading;

[| —— LSB model
—— USB model

» Gains need to be reduced to
maintain stability margins;
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Low Gain Case

x10° S1d=643,86

Open loop
—— Closed loop (model)

» High gain setup runs into trouble
under heavy beam loading;

» Gains need to be reduced to
maintain stability margins;

» Proportional gain 1, integral 6.6 at

_su=205.081 1 kHz; shift;

Open loop

ezt - Measured open-loop and
computed LLRF9 closed-loop
signals;
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Low Gain Case

std=27.9,86

x10°

Amplitude (arb. units)

Closed loop
—— Closed loop (model)
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Time (ms)

std =0.18,0.31
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Closed loop.
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15
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High gain setup runs into trouble
under heavy beam loading;
Gains need to be reduced to
maintain stability margins;
Proportional gain 1, integral 6.6 at
1 kHz; shift;

Measured open-loop and
computed LLRF9 closed-loop
signals;

Closed loop comparison: existing
system and LLRF9.
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» At high gains LLRF9 should outperform the existing (PEP-II)
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Summary

» At high gains LLRF9 should outperform the existing (PEP-II)
system;

» Comparable performance at low gains;

» Need more time to determine usable settings under SPEAR3 beam
loading.




