LLRF9 Status Update First AP Results

D. Teytelman

Dimtel, Inc., San Jose, CA, USA

February 11, 2021

LLRF9

Status

Thermal Stability

Open Loop Measurements

Closed Loop Measurements

Summary

In parasitic operation for two weeks;

- Used PAMM on Monday to develop tuner loop controls;
- Progress during the AP on Tuesday:
 - Closed tuner loops, adjusted parameters;
 - Configured klystron drive with extra attenuation to limit maximum power (at 50 kV) to 12 kW;
 - Ran the station in open loop mode, adjusted the two cavity vector combiner;
 - Closed proportional and integral loops;
 - Configured and closed klystron phase loop.
- All existing control loops have been tested at low power.

LLRF9

Status

Thermal Stability

Open Loop Measurements

Closed Loop Measurements

In parasitic operation for two weeks;

- Used PAMM on Monday to develop tuner loop controls;
- Progress during the AP on Tuesday:
 - Closed tuner loops, adjusted parameters;
 - Configured klystron drive with extra attenuation to limit maximum power (at 50 kV) to 12 kW;
 - Ran the station in open loop mode, adjusted the two cavity vector combiner;
 - Closed proportional and integral loops;
 - Configured and closed klystron phase loop.
- All existing control loops have been tested at low power.

LLRF9

Status

Thermal Stability

Open Loop Measurements

Closed Loop Measurements

In parasitic operation for two weeks;

Used PAMM on Monday to develop tuner loop controls;

Progress during the AP on Tuesday:

- Closed tuner loops, adjusted parameters;
- Configured klystron drive with extra attenuation to limit maximum power (at 50 kV) to 12 kW;
- Ran the station in open loop mode, adjusted the two cavity vector combiner;
- Closed proportional and integral loops;
- Configured and closed klystron phase loop.
- All existing control loops have been tested at low power.

LLRF9

Status

Thermal Stability

Open Loop Measurements

Closed Loop Measurements

- In parasitic operation for two weeks;
- Used PAMM on Monday to develop tuner loop controls;
- Progress during the AP on Tuesday:
 - Closed tuner loops, adjusted parameters;
 - Configured klystron drive with extra attenuation to limit maximum power (at 50 kV) to 12 kW;
 - Ran the station in open loop mode, adjusted the two cavity vector combiner;
 - Closed proportional and integral loops;
 - Configured and closed klystron phase loop.
- All existing control loops have been tested at low power.

Status

Thermal Stability

Open Loop Measurements

Closed Loop Measurements

- In parasitic operation for two weeks;
- Used PAMM on Monday to develop tuner loop controls;
- Progress during the AP on Tuesday:
 - Closed tuner loops, adjusted parameters;
 - Configured klystron drive with extra attenuation to limit maximum power (at 50 kV) to 12 kW;
 - Ran the station in open loop mode, adjusted the two cavity vector combiner;
 - Closed proportional and integral loops;
 - Configured and closed klystron phase loop.
- All existing control loops have been tested at low power.

Status

Thermal Stability

Open Loop Measurements

Closed Loop Measurements

- In parasitic operation for two weeks;
- Used PAMM on Monday to develop tuner loop controls;
- Progress during the AP on Tuesday:
 - Closed tuner loops, adjusted parameters;
 - Configured klystron drive with extra attenuation to limit maximum power (at 50 kV) to 12 kW;
 - Ran the station in open loop mode, adjusted the two cavity vector combiner;
 - Closed proportional and integral loops;
 - Configured and closed klystron phase loop.
- All existing control loops have been tested at low power.

Status

Thermal Stability

Open Loop Measurements

Closed Loop Measurements

- In parasitic operation for two weeks;
- Used PAMM on Monday to develop tuner loop controls;
- Progress during the AP on Tuesday:
 - Closed tuner loops, adjusted parameters;
 - Configured klystron drive with extra attenuation to limit maximum power (at 50 kV) to 12 kW;
 - Ran the station in open loop mode, adjusted the two cavity vector combiner;
 - Closed proportional and integral loops;
 - Configured and closed klystron phase loop.
- All existing control loops have been tested at low power.

LLRF9

Status

Thermal Stability

Open Loop Measurements

Closed Loop Measurements

- In parasitic operation for two weeks;
- Used PAMM on Monday to develop tuner loop controls;
- Progress during the AP on Tuesday:
 - Closed tuner loops, adjusted parameters;
 - Configured klystron drive with extra attenuation to limit maximum power (at 50 kV) to 12 kW;
 - Ran the station in open loop mode, adjusted the two cavity vector combiner;
 - Closed proportional and integral loops;
 - Configured and closed klystron phase loop.

All existing control loops have been tested at low power.

Status

Thermal Stability

Open Loop Measurements

Closed Loop Measurements

- In parasitic operation for two weeks;
- Used PAMM on Monday to develop tuner loop controls;
- Progress during the AP on Tuesday:
 - Closed tuner loops, adjusted parameters;
 - Configured klystron drive with extra attenuation to limit maximum power (at 50 kV) to 12 kW;
 - Ran the station in open loop mode, adjusted the two cavity vector combiner;
 - Closed proportional and integral loops;
 - Configured and closed klystron phase loop.
- All existing control loops have been tested at low power.

Status

Thermal Stability

Open Loop Measurements

Closed Loop Measurements

No external sensor — used coarse CPU temperature monitor;

- In closed loop stabilization air flow to the CPU is afftected by Peltier dissipation;
- Went open loop to quantify external temperature variation.
- After turning on the loops;
- External temperature swing is 2 °C, out of the loop sensors vary by 0.2 °C, in the loop sensors — 0.1 °C;

Full stripchart.

Status

Thermal Stability

Open Loop Measurements

Closed Loop Measurements

Summary

LLRF9

- No external sensor used coarse CPU temperature monitor;
 - In closed loop stabilization air flow to the CPU is affected by Peltier dissipation;
 - Went open loop to quantify external temperature variation.
- After turning on the loops;
- External temperature swing is 2 °C, out of the loop sensors vary by 0.2 °C, in the loop sensors — 0.1 °C;

Full stripchart.

Status

Thermal Stability

LI RE9

Open Loop Measurements

Closed Loop Measurements

- No external sensor used coarse CPU temperature monitor;
 - In closed loop stabilization air flow to the CPU is afftected by Peltier dissipation;
 - Went open loop to quantify external temperature variation.
- After turning on the loops;
- External temperature swing is 2 °C, out of the loop sensors vary by 0.2 °C, in the loop sensors — 0.1 °C;
- Full stripchart.

LLRF9

Status

Thermal Stability

Open Loop Measurements

Closed Loop Measurements

- No external sensor used coarse CPU temperature monitor;
 - In closed loop stabilization air flow to the CPU is affected by Peltier dissipation;
 - Went open loop to quantify external temperature variation.
- After turning on the loops;
- External temperature swing is 2 °C, out of the loop sensors vary by 0.2 °C, in the loop sensors — 0.1 °C;

Full stripchart.

Status

Thermal Stability

LI RE9

Open Loop Measurements

Closed Loop Measurements

- No external sensor used coarse CPU temperature monitor;
 - In closed loop stabilization air flow to the CPU is affected by Peltier dissipation;
 - Went open loop to quantify external temperature variation.
- After turning on the loops;
- External temperature swing is 2 °C, out of the loop sensors vary by 0.2 °C, in the loop sensors — 0.1 °C;

Full stripchart.

LLRF9

Status

Thermal Stability

Open Loop Measurements

Closed Loop Measurements

- No external sensor used coarse CPU temperature monitor;
 - In closed loop stabilization air flow to the CPU is affected by Peltier dissipation;
 - Went open loop to quantify external temperature variation.
- After turning on the loops;
- External temperature swing is 2 °C, out of the loop sensors vary by 0.2 °C, in the loop sensors — 0.1 °C;
- Full stripchart.

Status

Thermal Stability

LI RE9

Open Loop Measurements

Closed Loop Measurements

Cavity 1;

- Cavity 2;
- Cavity 3;
- Cavity 4;
- Loaded Q ranges from 6300 (cavity 2) to 6800 (cavity 4);
- Delay ranges from 785 ns (cavity 1) to 808 ns (cavity 4).

LLRF9

Status

Thermal Stability

Open Loop Measurements

Closed Loop Measurements

- Cavity 1;
- Cavity 2;
- Cavity 3
- Cavity 4;
- Loaded Q ranges from 6300 (cavity 2) to 6800 (cavity 4);
- Delay ranges from 785 ns (cavity 1) to 808 ns (cavity 4).

LLRF9

Status

Thermal Stability

Open Loop Measurements

Closed Loop Measurements

Cavity 1;

- Cavity 2;
- Cavity 3;
- Cavity 4;
- Loaded Q ranges from 6300 (cavity 2) to 6800 (cavity 4);
- Delay ranges from 785 ns (cavity 1) to 808 ns (cavity 4).

LLRF9

Status

Thermal Stability

Open Loop Measurements

Closed Loop Measurements

Cavity 1;

- Cavity 2;
- Cavity 3;
- Cavity 4;
- Loaded Q ranges from 6300 (cavity 2) to 6800 (cavity 4);
- Delay ranges from 785 ns (cavity 1) to 808 ns (cavity 4).

LLRF9

Status

Thermal Stability

Open Loop Measurements

Closed Loop Measurements

Cavity 1;

- Cavity 2;
- Cavity 3;
- Cavity 4;
- Loaded Q ranges from 6300 (cavity 2) to 6800 (cavity 4);
- Delay ranges from 785 ns (cavity 1) to 808 ns (cavity 4).

Status

Thermal Stability

Open Loop Measurements

Closed Loop Measurements

- Response from the setpoint to the error signal;
- Reflects closed-loop rejection of perturbations;
- Proportional loop;
- Proportional and integral;
- Same data vs. the offset frequency from the RF;
- 23 dB at 720 Hz, 17 dB at 1440 Hz.

LLRF9

Status

Thermal Stability

Open Loop Measurements

Closed Loop Measurements

- Response from the setpoint to the error signal;
- Reflects closed-loop rejection of perturbations;
- Proportional loop;
- Proportional and integral;
- Same data vs. the offset frequency from the RF;
- ▶ 23 dB at 720 Hz, 17 dB at 1440 Hz.

LLRF9

Status

Thermal Stability

Open Loop Measurements

Closed Loop Measurements

- Response from the setpoint to the error signal;
- Reflects closed-loop rejection of perturbations;
- Proportional loop;
- Proportional and integral;
- Same data vs. the offset frequency from the RF;
- ▶ 23 dB at 720 Hz, 17 dB at 1440 Hz.

LLRF9

Status

Thermal Stability

Open Loop Measurements

Closed Loop Measurements

- Response from the setpoint to the error signal;
- Reflects closed-loop rejection of perturbations;
- Proportional loop;
- Proportional and integral;
- Same data vs. the offset frequency from the RF;
- ▶ 23 dB at 720 Hz, 17 dB at 1440 Hz.

LLRF9

Status

Thermal Stability

Open Loop Measurements

Closed Loop Measurements

- Response from the setpoint to the error signal;
- Reflects closed-loop rejection of perturbations;
- Proportional loop;
- Proportional and integral;
- Same data vs. the offset frequency from the RF;
- 23 dB at 720 Hz, 17 dB at 1440 Hz.

LLRF9

Status

Thermal Stability

Open Loop Measurements

Closed Loop Measurements

- Response from the setpoint to the error signal;
- Reflects closed-loop rejection of perturbations;
- Proportional loop;
- Proportional and integral;
- Same data vs. the offset frequency from the RF;
- 23 dB at 720 Hz, 17 dB at 1440 Hz.

LLRF9

Status

Thermal Stability

Open Loop Measurements

Closed Loop Measurements

Fairly smooth progress so far;

Nearly ready to run at the full cavity field and with beam;
TODO:

- Modify and test the fast interlock chassis;
- Implement the drive power loop within LLRF9 IOC;
- Update the setpoint control to account for 4 cavities, not 2;
- Station control state machine sequence development?

LLRF9

Status

Thermal Stability

Open Loop Measurements

Closed Loop Measurements

- Fairly smooth progress so far;
- Nearly ready to run at the full cavity field and with beam;

TODO:

- Modify and test the fast interlock chassis;
- Implement the drive power loop within LLRF9 IOC;
- Update the setpoint control to account for 4 cavities, not 2;
- Station control state machine sequence development?

LLRF9

Status

Thermal Stability

Open Loop Measurements

Closed Loop Measurements

- Fairly smooth progress so far;
- Nearly ready to run at the full cavity field and with beam;

► TODO:

- Modify and test the fast interlock chassis;
- Implement the drive power loop within LLRF9 IOC;
- Update the setpoint control to account for 4 cavities, not 2;
- Station control state machine sequence development?

LLRF9

Status

Thermal Stability

Open Loop Measurements

Closed Loop Measurements