LLRF9 Beam Tests

J．Sebek ${ }^{1}$ ，F．Toufexis ${ }^{1}$ ，J．Wachter ${ }^{1}$ ，D．Teytelman ${ }^{2}$
${ }^{1}$ SSRL，SLAC，Menlo Park，CA，USA
${ }^{2}$ Dimtel，Inc．，San Jose，CA，USA

March 18， 2021

Day 1: Monday

- Spend a few hours in the morning figuring out tuner issue in cavity D;
- Mechanical issue found and resolved after an access;
- Tested the station state machine;
- Injected beam, tuned feedback loons;
- One beam loss event at 200 mA due to the user error;
- Reduced integral gain and easily reached 500 mA ;
- Dumped the beam and reinjected from scratch in the "hands-off" mode.

Day 1：Monday

－Spend a few hours in the morning figuring out tuner issue in cavity D ；
－Mechanical issue found and resolved after an access；
－Tested the station state machine；
－Injected beam，tuned feedback loops；
－One beam loss event at 200 mA due to the user error：
－Reduced integral gain and easily reached 500 mA；
－Dumped the beam and reinjected from scratch in the＂hands－off＂mode．

Day 1: Monday

- Spend a few hours in the morning figuring out tuner issue in cavity D;
- Mechanical issue found and resolved after an access;
- Tested the station state machine;
- Injected beam, tuned feedback loops;
- One beam loss event at 200 mA due to the user error;
- Reduced integral gain and easily reached 500 mA ;
- Dumped the beam and reinjected from scratch in the "hands-off" mode.

Day 1：Monday

－Spend a few hours in the morning figuring out tuner issue in cavity D ；
－Mechanical issue found and resolved after an access；
－Tested the station state machine；
－Injected beam，tuned feedback loops；
－One beam loss event at 200 mA due to the user error；
－Reduced integral gain and easily reached 500 mA ；
－Dumped the beam and reinjected from scratch in the＂hands－off＂mode．

Day 1：Monday

－Spend a few hours in the morning figuring out tuner issue in cavity D ；
－Mechanical issue found and resolved after an access；
－Tested the station state machine；
－Injected beam，tuned feedback loops；
－One beam loss event at 200 mA due to the user error；
－Reduced integral gain and easily reached 500 mA；
－Dumped the beam and reinjected from scratch in the＂hands－off＂mode．

Day 1: Monday

- Spend a few hours in the morning figuring out tuner issue in cavity D;
- Mechanical issue found and resolved after an access;
- Tested the station state machine;
- Injected beam, tuned feedback loops;
- One beam loss event at 200 mA due to the user error;
- Reduced integral gain and easily reached 500 mA ;
- Dumped the beam and reinjected from scratch in the "hands-off" mode.

Day 1：Monday

－Spend a few hours in the morning figuring out tuner issue in cavity D ；
－Mechanical issue found and resolved after an access；
－Tested the station state machine；
－Injected beam，tuned feedback loops；
－One beam loss event at 200 mA due to the user error；
－Reduced integral gain and easily reached 500 mA ；
－Dumped the beam and reinjected from scratch in the＂hands－off＂mode．

Day 2: Tuesday

- Started at 8 AM from capturing some data with SRF1 at 500 mA ;
- Moved to LLRF9;
- Injected to 500 mA in 100 mA steps, captured characterization data at each step;
- Upon completing all the measurements we transitioned to the 7 nm lattice; - Captured data at 100 and 500 mA;
- Two runs in top-up mode, 1.5 and 2 hours.

Day 2：Tuesday

－Started at 8 AM from capturing some data with SRF1 at 500 mA ；
－Moved to LLRF9；
－Injected to 500 mA in 100 mA steps，captured characterization data at each
－Upon completing all the measurements we transitioned to the 7 nm lattice： －Captured data at 100 and 500 mA；
－Two runs in top－up mode， 1.5 and 2 hours．

Day 2: Tuesday

- Started at 8 AM from capturing some data with SRF1 at 500 mA ;
- Moved to LLRF9;
- Injected to 500 mA in 100 mA steps, captured characterization data at each step;
- Upon completing all the measurements we transitioned to the 7 nm lattice; - Captured data at 100 and 500 mA ;
- Two runs in top-up mode, 1.5 and 2 hours.

Day 2: Tuesday

- Started at 8 AM from capturing some data with SRF1 at 500 mA ;
- Moved to LLRF9;
- Injected to 500 mA in 100 mA steps, captured characterization data at each step;
- Upon completing all the measurements we transitioned to the 7 nm lattice;
- Captured data at 100 and 500 mA;
- Two runs in top-up mode, 1.5 and 2 hours.

Day 2：Tuesday

－Started at 8 AM from capturing some data with SRF1 at 500 mA ；
－Moved to LLRF9；
－Injected to 500 mA in 100 mA steps，captured characterization data at each step；
－Upon completing all the measurements we transitioned to the 7 nm lattice；
－Captured data at 100 and 500 mA ；
－Two runs in top－up mode， 1.5 and 2 hours．

Day 2：Tuesday

－Started at 8 AM from capturing some data with SRF1 at 500 mA ；
－Moved to LLRF9；
－Injected to 500 mA in 100 mA steps，captured characterization data at each step；
－Upon completing all the measurements we transitioned to the 7 nm lattice；
－Captured data at 100 and 500 mA ；
－Two runs in top－up mode， 1.5 and 2 hours．

Overall Picture

- Stripcharts sampling at 2 SPS:
- Beam current;
- Cavity voltages and phases;

Bunch-by-

- Klystron forward power and phase.
- Full day 2 AP;
- The first top-up run;
- The second top-up run
- Station voltage is $2820 \pm 1.2 \mathrm{kV}$.

Overall Picture

Cavity and klystron forward phases

- Stripcharts sampling at 2 SPS:
- Beam current;
- Cavity voltages and phases;
- Klystron forward power and phase.
- Full day 2 AP;
- The first top-up run;
- The second top-up run;
- Station voltage is $2820 \pm 1.2 \mathrm{kV}$

Overall Picture

- Stripcharts sampling at 2 SPS:
- Beam current;
- Cavity voltages and phases;
- Klystron forward power and phase.
- Full day 2 AP;
- The first top-up run;
- The second top-up run
- Station voltage is $2820 \pm 1.2 \mathrm{kV}$

Overall Picture

Start time 09-Mar-2021 13:06:45

- Stripcharts sampling at 2 SPS:
- Beam current;
- Cavity voltages and phases;
- Klystron forward power and phase.
- Full day 2 AP;
- The first top-up run;
- The second top-up run;
- Station voltage is $2820 \pm 1.2 \mathrm{kV}$.

Cavity voltages

Glitches Observed During the AP

- Cavity 1 amplitude and phase jump, 0.7\% and 0.3°.
- Cavity 2 responds in a mirror fashion to keep the vector sum fixed;
- Cavities 3 and 4 follow 2;
- Suggests cavity 1 probe signal insertion loss change;
- A few more glitches, now cavity 3;
- Not in the vector sum, no reaction from cavities 1 and 2;
- Unfortunately, AP stripcharts were captured at 2 SPS, not 10. Archiver is only capturing at 1 SPS.

Glitches Observed During the AP

Cavity voltages

- Cavity 1 amplitude and phase jump, 0.7\% and 0.3°.
- Cavity 2 responds in a mirror fashion to keep the vector sum fixed;
- Cavities 3 and 4 follow 2;
- Suggests cavity 1 probe signal insertion loss change;
\rightarrow A few more glitches, now cavity 3;
- Not in the vector sum, no reaction from cavities 1 and 2;
- Unfortunately, AP stripcharts were captured at 2 SPS, not 10. Archiver is only capturing at 1 SPS

Glitches Observed During the AP

Cavity voltages

－Cavity 1 amplitude and phase jump，0．7\％ and 0.3° ．
－Cavity 2 responds in a mirror fashion to keep the vector sum fixed；
－Cavities 3 and 4 follow 2；
－Suggests cavity 1 probe signal insertion loss change
－A few more alitches，now cavity 3；
－Not in the vector sum，no reaction from cavities 1 and 2；
－Unfortunately，AP stripcharts were captured at 2 SPS，not 10．Archiver is only capturing at 1 SPS．

Glitches Observed During the AP

Cavity voltages

- Cavity 1 amplitude and phase jump, 0.7% and 0.3°.
- Cavity 2 responds in a mirror fashion to keep the vector sum fixed;
- Cavities 3 and 4 follow 2;
- Suggests cavity 1 probe signal insertion loss change;
- A few more glitches, now cavity 3;
- Not in the vector sum, no reaction from cavities 1 and 2;
- Unfortunately, AP stripcharts were captured at 2 SPS, not 10. Archiver is only capturing at 1 SPS.

Glitches Observed During the AP

Klystron forward power

－Cavity 1 amplitude and phase jump，0．7\％ and 0.3° ．
－Cavity 2 responds in a mirror fashion to keep the vector sum fixed；
－Cavities 3 and 4 follow 2；
－Suggests cavity 1 probe signal insertion loss change；
－A few more glitches，now cavity 3；
\rightarrow Not in the vector sum，no reaction from cavities 1 and 2；
－Unfortunately，AP stripcharts were captured at 2 SPS，not 10．Archiver is only capturing at 1 SPS

Glitches Observed During the AP

Klystron forward power

- Cavity 1 amplitude and phase jump, 0.7% and 0.3°.
- Cavity 2 responds in a mirror fashion to keep the vector sum fixed;
- Cavities 3 and 4 follow 2;
- Suggests cavity 1 probe signal insertion loss change;
- A few more glitches, now cavity 3;
- Not in the vector sum, no reaction from cavities 1 and 2;
- Unfortunately, AP stripcharts were captured at 2 SPS, not 10. Archiver is only capturing at 1 SPS

Glitches Observed During the AP

Klystron forward power

- Cavity 1 amplitude and phase jump, 0.7\% and 0.3°.
- Cavity 2 responds in a mirror fashion to keep the vector sum fixed;
- Cavities 3 and 4 follow 2;
- Suggests cavity 1 probe signal insertion loss change;
- A few more glitches, now cavity 3;
- Not in the vector sum, no reaction from cavities 1 and 2;
- Unfortunately, AP stripcharts were captured at 2 SPS, not 10 . Archiver is only capturing at 1 SPS...

Glitch on March 16th

- Fired up stripcharts at 10 SPS and within an hour had a glitch;
- Cavity 1 jumps 2.8\% and 1.5°;
- Cavities 2, 3, and 4 respond to keep the vector sum fixed;
- Cavity 1 tuner responds 1.5 s later, consistent with the 0.5 SPS tuner loop update rate;
- Zoom in close, transition in 100 ms;
- Still consistent with cavity 1 probe signal insertion loss change;
- Forward power increase due to mismatch in cavities 2-4?

Glitch on March 16th

Cavity (-) and klystron forward (--) phases

- Fired up stripcharts at 10 SPS and within an hour had a glitch;
- Cavity 1 jumps 2.8% and 1.5°;
- Cavities 2, 3, and 4 respond to keep the vector sum fixed;
- Cavity 1 tuner responds 1.5 s later, consistent with the 0.5 SPS tuner loop update rate;
- Zoom in close, transition in 100 ms ;
- Still consistent with cavity 1 probe signal insertion loss change;
- Forward power increase due to mismatch in cavities 2-4?

Summary

Glitch on March 16th

Cavity（－）and klystron forward（－－）phases

－Fired up stripcharts at 10 SPS and within an hour had a glitch；
－Cavity 1 jumps 2.8% and 1.5° ；
－Cavities 2，3，and 4 respond to keep the vector sum fixed；
－Cavity 1 tuner responds 1.5 s later， consistent with the 0．5 SPS tuner loop update rate；
－Zoom in close，transition in 100 ms；
－Still consistent with cavity 1 probe signal insertion loss change；
－Forward power increase due to mismatch in cavities 2－4？

Glitch on March 16th

Cavity (-) and klystron forward (--) phases

- Fired up stripcharts at 10 SPS and within an hour had a glitch;
- Cavity 1 jumps 2.8\% and 1.5°;
- Cavities 2, 3, and 4 respond to keep the vector sum fixed;
- Cavity 1 tuner responds 1.5 s later, consistent with the 0.5 SPS tuner loop update rate;
- Zoom in close, transition in 100 ms;
- Still consistent with cavity 1 probe signal insertion loss change;
- Forward power increase due to mismatch in cavities 2-4?

Glitch on March 16th

Cavity (-) and klystron forward (-) phases

- Fired up stripcharts at 10 SPS and within an hour had a glitch;
- Cavity 1 jumps 2.8% and 1.5°;
- Cavities 2, 3, and 4 respond to keep the vector sum fixed;
- Cavity 1 tuner responds 1.5 s later, consistent with the 0.5 SPS tuner loop update rate;
- Zoom in close, transition in 100 ms;
- Still consistent with cavity 1 probe signal insertion loss change;
- Forward power increase due to mismatch in cavities 2-4?

Glitch on March 16th

Cavity (-) and klystron forward (-) phases

- Fired up stripcharts at 10 SPS and within an hour had a glitch;
- Cavity 1 jumps 2.8% and 1.5°;
- Cavities 2, 3, and 4 respond to keep the vector sum fixed;
- Cavity 1 tuner responds 1.5 s later, consistent with the 0.5 SPS tuner loop update rate;
- Zoom in close, transition in 100 ms;
- Still consistent with cavity 1 probe signal insertion loss change;
- Forward power increase due to mismatch in cavities 2-4?

Glitch on March 16th

Cavity (-) and klystron forward (--) phases

- Fired up stripcharts at 10 SPS and within an hour had a glitch;
- Cavity 1 jumps 2.8% and 1.5°;
- Cavities 2, 3, and 4 respond to keep the vector sum fixed;
- Cavity 1 tuner responds 1.5 s later, consistent with the 0.5 SPS tuner loop update rate;
- Zoom in close, transition in 100 ms ;
- Still consistent with cavity 1 probe signal insertion loss change;
- Forward power increase due to mismatch in cavities $2-4$?

Bunch-by-bunch Signals and Spectra

- At 500 mA ;
- Station phase is slightly different for LLRF9;
- May affect front-end sensitivity;
- See dramatic reduction in the RMS.

Bunch-by-bunch Signals and Spectra

- At 500 mA ;
- Station phase is slightly different for LLRF9;
- May affect front-end sensitivity;
- See dramatic reduction in the RMS.

Bunch-by-bunch Signals and Spectra

- At 500 mA ;
- Station phase is slightly different for LLRF9;
- May affect front-end sensitivity;
- See dramatic reduction in the RMS.

Bunch-by-bunch Signals and Spectra

- At 500 mA ;
- Station phase is slightly different for LLRF9;
- May affect front-end sensitivity;
- See dramatic reduction in the RMS.

Cumulative Spectra

－Clear difference between the cumulative spectra；
－Some difference at 360 Hz ；
－A big difference around 2.7 kHz ；
－Smaller increase around the synchrotron frequency as well．

Cumulative Spectra

－Clear difference between the cumulative spectra；
－Some difference at 360 Hz ；
－A big difference around 2.7 kHz ；
－Smaller increase around the synchrotron frequency as well．

AP Summary

Cumulative Spectra

Cumulative spectra（bunch－by－bunch data，system L）

－Clear difference between the cumulative spectra；
－Some difference at 360 Hz ；
－A big difference around 2.7 kHz ；
－Smaller increase around the synchrotron frequency as well．

Cumulative Spectra

Cumulative spectra (bunch-by-bunch data, system L)

- Clear difference between the cumulative spectra;
- Some difference at 360 Hz ;
- A big difference around 2.7 kHz ;
- Smaller increase around the synchrotron frequency as well.

Detailed Spectra

- Broadband noise floor is lower;
- The line at 360 Hz is halved;
- 2.7 kHz is completely absent;
- Synchrotron frequency is less shifted and attenuated.

Detailed Spectra

- Broadband noise floor is lower;
- The line at 360 Hz is halved;
> 2.7 kHz is completely absent
- Synchrotron frequency is less shifted and attenuated.

Detailed Spectra

- Broadband noise floor is lower;
- The line at 360 Hz is halved;
- 2.7 kHz is completely absent;
- Synchrotron frequency is less shifted and attenuated.

Detailed Spectra

- Broadband noise floor is lower;
- The line at 360 Hz is halved;
- 2.7 kHz is completely absent;
- Synchrotron frequency is less shifted and attenuated.

Summary

- Very smooth commissioning for the full beam currents;
- Good stability margins, short-term operation experience suggests this is a fairly robust configuration;
- Field stability is comparable to the old station at offsets above 10 Hz , more stable below;
- Feedback configuration can be further optimized;
- EPICS vector sum control is designed and ready for integration.

Summary

- Very smooth commissioning for the full beam currents;
- Good stability margins, short-term operation experience suggests this is a fairly robust configuration;
- Field stability is comparable to the old station at offsets above 10 Hz, more stable below;
- Feedback conficuration can be further optimized;
- EPICS vector sum control is designed and ready for integration.

Summary

－Very smooth commissioning for the full beam currents；
－Good stability margins，short－term operation experience suggests this is a fairly robust configuration；
－Field stability is comparable to the old station at offsets above 10 Hz ，more stable below；
－Feedback configuration can be further optimized；
－EPICS vector sum control is designed and ready for integration．

Summary

- Very smooth commissioning for the full beam currents;
- Good stability margins, short-term operation experience suggests this is a fairly robust configuration;
- Field stability is comparable to the old station at offsets above 10 Hz , more stable below;
- Feedback configuration can be further optimized;
\rightarrow EPICS vector sum control is designed and ready for integration.

Summary

－Very smooth commissioning for the full beam currents；
－Good stability margins，short－term operation experience suggests this is a fairly robust configuration；
－Field stability is comparable to the old station at offsets above 10 Hz ，more stable below；
－Feedback configuration can be further optimized；
－EPICS vector sum control is designed and ready for integration．

