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@ LLRF9 Introduction
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LLRF9 System

@ A ssingle 2U chassis for one-
and two-cavity RF control;
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LLRF9 System

@ A ssingle 2U chassis for one-
and two-cavity RF control;
[a 66066 60606 0000 o

@ 9 input RF channels, 2 RF
i outputs;
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LLRF9 System

@ A ssingle 2U chassis for one-
and two-cavity RF control;

@ 9 input RF channels, 2 RF
outputs;

@ Tuner motor control via RS-
485/Ethernet/EPICS/analog
output;
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LLRF9 System

@ A ssingle 2U chassis for one-
and two-cavity RF control;

@ 9 input RF channels, 2 RF
outputs;

@ Tuner motor control via RS-
485/Ethernet/EPICS/analog
output;

@ External interlock daisy-chain;
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LLRF9 System

@ A ssingle 2U chassis for one-
and two-cavity RF control;

@ 9 input RF channels, 2 RF
outputs;

@ Tuner motor control via RS-
485/Ethernet/EPICS/analog
output;

@ External interlock daisy-chain;
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@ Two external trigger inputs;
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LLRF9 System

@ A ssingle 2U chassis for one-
and two-cavity RF control;

@ 9 input RF channels, 2 RF
i outputs;

@ Tuner motor control via RS-
485/Ethernet/EPICS/analog
output;

@ External interlock daisy-chain;
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@ Two external trigger inputs;

@ Eight opto-isolated baseband
ADC channels for slow

interlocks. @fmﬂ ' gﬁ)
{
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Outline

“ Setup

@ Demo Setup and Schedule
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Demo Setup: Booster

@ Set up LLRF9 to run the booster RF with the following signals:

RF reference (476 MHz)

Cavity probe signal (476 MHz)

Cavity forward signal (476 MHz)

Cavity reflected signal (476 MHz)

Drive output (476 MHz)

Ramp trigger (TTL)

Tuner speed control (+7.5 V slow DAC)

Tuner position potentiometer (0—10 V slow ADC)

(
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Demo Setup: Storage Ring

@ Set up LLRF9 to run both storage ring RF stations with the
following signals:
o RF reference (476 MHz)
e For each RF station:
@ Cavity probe signal (476 MHz)

Cavity forward signal (476 MHz)
Cauvity reflected signal (476 MHz)
Cavity probe monitor (476 MHz)
Drive output (476 MHz)
Tuner speed control (+7.5 V slow DAC)
Tuner position potentiometer (0-10 V slow ADC)

(
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Progress

@ Monday, June 8th
o Booster setup: inputs first to establish signal levels;
e Connected drive output, configured feedback loops;
o Established closed-loop operation in CW mode.
@ Tuesday, June 9th
o Interfaced LLRF9 tuner control loops to booster motor control;
o Established closed-loop operation of the tuner loop;
e Ran booster with beam, adjusted for maximum efficiency;
o Started storage ring setup, configured station A.
@ Wednesday, June 10th
o Completed storage ring configuration;
o Tried operation with beam, some dynamic difficulties;
o Left RF stations operating overnight (no beam) to collect stablllt

data. C@QJ
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Progress (Continued)

@ Thursday, June 11th

e Analyzed LLRF setup and found proper configuration for operation

with beam;

e Training (Station A setup by Felipe Santiago);

@ Injected beam around 17:00, left to coast overnight.
@ Friday, June 12th

e Synchrotron tune tracking exploration;

e Time and frequency domain characterization;

@ Phase noise studies;

e Switched back to analog LLRF;

o Injected beam around 19:00, left to coast overnight.

@ Saturday, June 13th
e Hardware removal;

@ Bunch-by-bunch feedback experiments. 6liingt %ﬁ/
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Outline

e LLRF Characterization
@ Frequency Domain
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LLRF Characterization Frequency Domain

Open Loop Transfer Function

Setpoint and excitation

Disturbances

+

Error

@ Measured from setpoint to the
cavity probe;

RF
cavity

Cavity field protj
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LLRF Characterization Frequency Domain

Open Loop Transfer Function

@ Measured from setpoint to the

Setpoint and excitation Disturbances
. cavity probe;

= cavity @ Feedback block in open loop has
B Cavity field DJ no dynamics, just gain and phase

shift;
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LLRF Characterization Frequency Domain

Open Loop Transfer Function

Cavity A open-loop transfer function

ol ]
@
=
c -10F 1
T
o)

20} 3 . ]

500 400 -300 200 100 0 100 200 300 400 500
Frequency offset (kHz)

7 °F ]
¢

& -100 1
s

8 200+ 1
£

[ ~
-100 0 100 200 300 400 500
Frequency offset (kHz)

500 400 300 200

(Dimtel)

@ Measured from setpoint to the
cavity probe;

@ Feedback block in open loop has
no dynamics, just gain and phase
shift;

@ Open loop cavity response;

(
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Open Loop Transfer Function

Gano 11,0900, 0 ) 150w @ Measured from setpoint to the
[ — e cavity probe;
€ ] @ Feedback block in open loop has
~ ] no dynamics, just gain and phase

"I500 400 -300 -200 -100 0 100 200 300 400 500 Sh'f‘t
Frequency offset (kHz) 3

SRR @ Open loop cavity response;

@ Fit resonator model to extract
gain, loaded Q,

P e (0 @ Extremely useful for configuring
the feedback loops, tuner loops,

general diagnostics. ~
(ff [ipg %ﬁ/
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LLRF Characterization Frequency Domain

Closed Loop Transfer Functions

Setpoint and excitation Disturbances
+ i @ Measured from setpoint to the error
Error RF

cavity —‘ S|gna|,

Cavity field probe
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LLRF Characterization Frequency Domain

Closed Loop Transfer Functions

Setpoint and excitation

+

@ Measured from setpoint to the error

signal;

@ Shows attenuation at frequencies

where feedback has gain;
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LLRF Characterization Frequency Domain

Closed Loop Transfer Functions

Setpoint and excitation Disturbances

+ @ Measured from setpoint to the error
Error RF .
> . “ cavity —‘ Slgnal,
cwyfeamerel @ Shows attenuation at frequencies
where feedback has gain;

@ Perturbations at the input of the cavity
are rejected with the same transfer
function;
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LLRF Characterization Frequency Domain

Closed Loop Transfer Functions

Gain (dB)
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200 300 400 500

@ Measured from setpoint to the error
signal;

@ Shows attenuation at frequencies
where feedback has gain;

@ Perturbations at the input of the cavity
are rejected with the same transfer
function;

@ Proportional only;

(
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LLRF Characterization Frequency Domain

Closed Loop Transfer Functions

@ Measured from setpoint to the error
signal;

@ Shows attenuation at frequencies

] where feedback has gain;

= = = = @ Perturbations at the input of the cavity
are rejected with the same transfer
function;

@ Proportional only;

@ Proportional and integral, much
higher rejection at low frequencies;
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LLRF Characterization Frequency Domain

Closed Loop Transfer Functions

@ Measured from setpoint to the error
signal;

@ Shows attenuation at frequencies
where feedback has gain;

@ Perturbations at the input of the cavity
are rejected with the same transfer
function;

@ Proportional only;

@ Proportional and integral, much
higher rejection at low frequencies;

@ Easier to see with the logarithmic ‘

frequency scale. ﬁJﬂﬂ ; éﬁ/
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Outline

e LLRF Characterization

@ Time Domain
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LLRF Characterization Time Domain

Step Response
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@ Ramp start triggers waveform

acquisition;
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LLRF Characterization Time Domain

Step Response
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@ Ramp start triggers waveform
acquisition;

@ Ramp profile loaded with a 10%
amplitude step (230 to 253 kV);

@fmﬂ's—ﬁ/

(

iGp12 LNLS 13/31



LLRF Characterization Time Domain

Step Response

f > | @ Ramp start triggers waveform
acquisition;
- " @ Ramp profile loaded with a 10%

. o amplitude step (230 to 253 kV);
"‘/ : @ Open loop: phase shift (AM-PM in

power stage), setpoint error;
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LLRF Characterization

Step Response

Prove Probe
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Time Domain

@ Ramp start triggers waveform
acquisition;

@ Ramp profile loaded with a 10%
amplitude step (230 to 253 kV);

@ Open loop: phase shift (AM-PM in
power stage), setpoint error;

@ Closed loop response is much faster,
as expected;

(
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LLRF Characterization

Step Response
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Time Domain

@ Ramp start triggers waveform
acquisition;

@ Ramp profile loaded with a 10%
amplitude step (230 to 253 kV);

@ Open loop: phase shift (AM-PM in
power stage), setpoint error;

@ Closed loop response is much faster,
as expected;

@ A bit too much gain, overshoot seen;
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LLRF Characterization

Step Response
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Time Domain

Ramp start triggers waveform
acquisition;

Ramp profile loaded with a 10%
amplitude step (230 to 253 kV);
Open loop: phase shift (AM-PM in
power stage), setpoint error;

Closed loop response is much faster,
as expected;

A bit too much gain, overshoot seen;

Prominent ripple due to SSA power

supply switching at 190 kHz. iy
el
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LLRF Characterization Time Domain

Pulse Response
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LLRF Characterization Time Domain

Pulse Response
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.
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@ Open-loop pulse response, cavity A;
@ Base 2 kV, pulse 20 kV;
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LLRF Characterization Time Domain

Pulse Response

77 g Open-loop pulse response, cavity A;
- @ Base 2 kV, pulse 20 kV,
EZZT ’ @ Larger reflected power peak at the
e T falling edge, expected for coupling
factor 8 > 1;
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LLRF Characterization Time Domain

Pulse Response
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@ Open-loop pulse response, cavity A;
@ Base 2 kV, pulse 20 kV;

@ Larger reflected power peak at the
falling edge, expected for coupling
factor 8 > 1;

@ Phase slope during pulse decay
indicates the cavity is slightly detuned.

(
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Outline

e Stability Measurements
@ Thermal
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Stability Measurements Thermal

Thermal Stability: Lab Measurements

Ambient temperature measurement

On chassis|
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Stability Measurements Thermal

Thermal Stability: Lab Measurements

Ambient temperature measurement

‘ on chass\s{
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@ 9 internal sensors on cold plate: 6
NTCs, 3 DS18B20 digital sensors;

@ Three temperature stabilization loops
using thermoelectric coolers;
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Stability Measurements Thermal

Thermal Stability: Lab Measurements

Ambient temperature measurement

, =
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5 Y ] .
« /XW ! WW @ 9 internal sensors on cold plate: 6

= NTCs, 3 DS18B20 digital sensors;
S— @ Three temperature stabilization loops

LLRF:BRD1:NTG1:TEMP [degC]
—— LLRF:BRD2NTC1:TEMP [degC]

e — . . .
T LAF aRo1 DS 622 TEMS deg0] using thermoelectric coolers;
o 24] —— LL 822.TEMP [degC]}

5 —————— @ Two external sensors, in air and
o attached to chassis;
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Stability Measurements Thermal

Thermal Stability: Lab Measurements

Ambient temperature measurement

On chassis|
In air

)

K 4
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Out of loop sensors
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@ 9 internal sensors on cold plate: 6
NTCs, 3 DS18B20 digital sensors;

@ Three temperature stabilization loops
using thermoelectric coolers;

@ Two external sensors, in air and
attached to chassis;

@ Tight stabilization of in-loop sensors;
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Stability Measurements Thermal

Thermal Stability: Lab Measurements

Ambient temperature measurement

On chassis|
In air

)
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Out of loop sensors
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@ 9 internal sensors on cold plate: 6
NTCs, 3 DS18B20 digital sensors;

@ Three temperature stabilization loops
using thermoelectric coolers;

@ Two external sensors, in air and
attached to chassis;

@ Tight stabilization of in-loop sensors;

@ Residual sensitivity of out-of-loop
sensors is 0.09-0.12 °C/°C.
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Thermal Stability: LNLS Measurements

Peliier control signals
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@ Recorded over 2 days;
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Thermal Stability: LNLS Measurements

Peliier control signals
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@ Recorded over 2 days;

@ Diurnal temperature variation clearly
seen in out of loop sensors and
Peltier control signals;
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Thermal Stability: LNLS Measurements

Peliier control signals
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@ Recorded over 2 days;

@ Diurnal temperature variation clearly
seen in out of loop sensors and
Peltier control signals;

@ Out of loop NTC sensors show
0.22 °C peak-to-peak variation.
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Outline

e Stability Measurements

@ Without beam
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Field Stability 1: LLRF9 without beam
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@ Overnight run of two RF stations,
no beam;
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Field Stability 1: LLRF9 without beam

Cavity 1, peak-to-peak variation 0.29%/0.30% probe/monitor

- @ Overnight run of two RF stations,
no beam;

] @ Average amplitude scale and
S S S B phase offsets removed, identical
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Field Stability 1: LLRF9 without beam

Cavity 1, peak-to-peak variation 0.29%/0.30% probe/monitor

@ Overnight run of two RF stations,
no beam;

] @ Average amplitude scale and
= R S R S e phase offsets removed, identical
06/10 19:12 06/1021:36 06/11 00:00 Ds/lT:"(‘):QA 06/1104:48 06/1107:12 06/11 09:36 Vertical SCaIeS;

oty 2, o oscvaration QLERTS rcbaoniy @ Station B had significantly higher
1 feedback loop gains, better field
] stability;

(kv)
®
8

Cavity field
1Y
®
&
>

B
= 2501
-]
2
£ 2s08] M ]
3
8

249.6 7

; Probe
2494 —— Monitor P
06/10 19:12 06/1021:36 06/1100:00 06/1102:24 06/1104:48 06/1107:12 06/11 09:36 O Jﬂfl =
Time ~

(



Field Stability 1: LLRF9 without beam

Cavity 1, peak-to-peak variation 0.07/0.10 degrees probe/monitor

127.
127.07
127.06

< 127.05
&

@ Overnight run of two RF stations,
no beam;
@ Average amplitude scale and

phase offsets removed, identical
vertical scales;

. Cavity 2, peak-to-peak variation 0.02/0.04 degrees probe/monitor (* ] Stat|0n B had S|gn|f|Cant|y h|gher
feedback loop gains, better field

S 127.04

2

£ 127.03

2 127.02

© 12701
127

126.99

128, L L L L
06710 19:12 06/1021:36 06/1100:00 06/1102:24 06/1104:48 06/1107:12 06/1109:36

g stability;
300 Wﬂ @ Monitor channels show more
° o variation than feedback channels,

107.5

107.49 7;’:;?0, as eXpeCted

107. B L
06/10 19:12 06/1021:36 06/11 00:00 06/11 02:24 06/1104:48 06/1107:12 06/11 09:36 =
6liigphe




Outline

e Stability Measurements

@ With beam

fOJ'Jﬂﬂéﬁ/

(



Field Stability 2: LLRF9 With Beam

Cavi m peak-to-peak variation 0.03%/0.19% probe/monitor
250.1

250(

' "\w’/\ | @ Overnight run, beam current
' decaying from 250 mA, 1.37 GeV;,
@ Masked data between 0:00 and

1:26 corresponds to longitudinal
tune tracking studies;

Cavity field (kV)
wooow
ROR
& &
PR

»
®
&
S

249
06/11 16:48 06711 2136 06/1202 24 o2 0712 06/12 12:00

Cavity 2, peak-to-peak variation 0.02%/0.06% probe/monitor
T T T

s

250.1

Cavity field (kV)
oo
8 3 »
> o 3

»
®
©
S

24961 4 -
—— Probe
——— Monitor| [ -
2495 ‘» ey — 0 JfLﬂ £
06/i116:48  O6/1121:36 067120224 06120742 06/12 1200 ( =
Time

(Dimtel) iGp12 LNLS  21/31



Field Stability 2: LLRF9 With Beam

250.1

Cavi m peak-to-peak variation 0.03%/0.19% probe/monitor

250(

Cavity field (kV)
wooow
ROR
& &
PR

»
®
&
S

24961
— Probe
—— Monitor|

249
06/11 16:48

250.1

06711 2136 06/1202 24 o2 0712 06/12 12:00

Cavity 2, peak-to-peak variation 0.02%/0.06% probe/monitor
T T T

Cavity field (kV)
oo
8 3 »
> o 3

»
®
©
S

249.6F

s

—— Probe
—— Monitor|

2495
06711 16:48

06/1121:36 06/12 02:24 06/1207:12 06/12 12:00
Time

(Dimtel)

@ Overnight run, beam current
decaying from 250 mA, 1.37 GeV;,

@ Masked data between 0:00 and
1:26 corresponds to longitudinal
tune tracking studies;

@ Similar stability of in-loop signals;
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Field Stability 2: LLRF9 With Beam

Cavity 1, peak-to-peak variation 0.01/0.03 degrees probe/monitor

127
Probe
12737 Monitor
127.361 :
S 12735 {
s
8
S 12734 oo
s S
£ 127331
&
2 127.32F
3
© 12731
127.3F
127.29f
127, . . v .
06/11 16:48 06/112136 06/120224  06/1207:12 06/1212:00
Cavity 2, peak-to-peak variation 0.01/0.06 degrees probe/monitor
107. T T T
Probe
Monitor
197 ; ; ; ;
6/11 16:48 06/11 21:36 06/12 02:24 06/12 07:12 06/12 12:00
Time

(Dimtel)

@ Overnight run, beam current
decaying from 250 mA, 1.37 GeV;,

@ Masked data between 0:00 and
1:26 corresponds to longitudinal
tune tracking studies;

@ Similar stability of in-loop signals;

@ Monitor channels show
significantly more variation than
feedback channels;

(
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Field Stability 2: LLRF9 With Beam

Cavity 1, peak-to-peak variation 0.01/0.03 degrees probe/monitor

127
Probe
12737 Monitor
127.361 :
S 12735 {
s
8
S 12734 oo
s S
£ 127331
&
2 127.32F
3
© 12731
127.3F
127.29f
127, . . v .
06/11 16:48 06/112136 06/120224  06/1207:12 06/1212:00
Cavity 2, peak-to-peak variation 0.01/0.06 degrees probe/monitor
107. T T T
Probe
Monitor
197 ; ; ; ;
6/11 16:48 06/11 21:36 06/12 02:24 06/12 07:12 06/12 12:00
Time

(Dimtel)

iGp12

@ Overnight run, beam current
decaying from 250 mA, 1.37 GeV;,

@ Masked data between 0:00 and
1:26 corresponds to longitudinal
tune tracking studies;

@ Similar stability of in-loop signals;

@ Monitor channels show
significantly more variation than
feedback channels;

@ Worst-case peak-to-peak range is
0.2% and 0.06°. 7
gy =/

LNLS 21/31



Field Stability 2: LLRF9 With Beam

2 \
5
H
g
< 15F \

—— Cav 1 fwd|

Cav 2 fwd|

06/11 16:48 06711 2136 06712 0224 067120712 061121200
Time

Cav 1 fwd
Cav 1 probe|

06/11 16:48 06/1121:36 06/12 02:24 06/1207:12 06/12 12:00

ime

107.81

< 10761
2
£
& 107.4F
107.2F Cav 2 fwd
Cav 2 probe|
107 ; - y
06/1116:48 06/1121:36 06/12 02:24 06/12 07:12 06/12 12:00

ime

@ Cavity probe and forward phases
during coasting;
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Field Stablllty 2: LLRF9 With Beam

—— Cav 1 fwd|
—— Cav 2 fwd
s 200
8
H
3
o 15 \

06/11 16:48 06711 2136 06712 0224 067120712 061121200
Time

@ Cavity probe and forward phases
during coasting;

@ Field control loops hold probe
phases constant;

Cav 1 fwd
—— Cav 1 probe]

06/11 16:48 06/1121:36 06/12 02:24 06/1207:12 06/12 12:00
Time

I Cav 2 fwd 3
—— Cav 2 prob
06/11 16:48 06/11 21:36 06/12 02:24 06/12 07:12 06/12 12:00 ﬁ:r =\
(J JIgrE
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Field Stablllty 2: LLRF9 With Beam

—— Cav 1 fwd|
—— Cav 2 fwd
s 200
8
H
3
o 15 \

06/11 16:48 06711 2136 o612 0224 067120712 061121200
Time

@ Cavity probe and forward phases
during coasting;

@ Field control loops hold probe
phases constant;

Cav 1 fwd
—— Cav 1 probe]

06/11 16:48 06/11‘21 36 06;’12‘02.2A 06/12‘0712 06/12 12:00 o Tuner Ioop is adjusting Cavity
frequency to keep forward in
phase with the probe;

I Cav 2 fwd 3
—— Cav 2 prob
06/11 16:48 06/11 21:36 06/12 02:24 06/12 07:12 06/12 12:00 ﬁ:r =\
(J JIgrE
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Field Stablllty 2: LLRF9 With Beam

—— Cav 1 fwd|
Cav 2 fwd
S 20r
8
H
5
@ 15F \

06/11 16:48 06711 2136 o612 0224 067120712 061121200
Time

@ Cavity probe and forward phases
during coasting;

@ Field control loops hold probe
phases constant;

Cav 1 fwd
—— Cav 1 probe]

06/11 16:48 06/11‘21 36 06;’12‘02.2A 06/12‘0712 06/12 12:00 o Tuner Ioop is adjusting Cavity
frequency to keep forward in
phase with the probe;

@ Dead band of 0.3° is evident.

Cav 2 fwd 3
Cav 2 probe|
Ds/ri'\ 16:48 06/11 21:36 06/12 02:24 06/12 07:12 06/12 12:00 ﬁ:r =\
(J JIgrE
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Field Stability 3: Analog LLRF

Cavity 1, peak-to-peak variation 0.57%/0.67% probe/monitor

24651

246

2455

Cavity field (kV)

245,

24451 -

244}

e @ Overnight run, beam current
06/1219:12 06/1221:36 06/13 00:00 OSJ!rZ‘iH?SZ:ZA 06/13 04:48 06/13 07:12 06/13 09:36 decaying from 250 mA, 1 '37 Gev;

Cavity 2, peak-to-peak variation 1.15%/1.16% probe/monitor

2465

246

2455}

245}

Cavity field (kV)

2445

244

Probe.
—— Monitor

243 L L L L
06/1219:12 06/1221:36 06/1300:00 06/1302:24 06/13 04:48 06/1307:12 06/13 09:36

ol gl -iﬂ/

(



Field Stability 3: Analog LLRF

Cavity 1, peak-to-peak variation 0.57%/0.67% probe/monitor

24651

246

2455

Cavity field (kV)

245,

24451 -

244}

e @ Overnight run, beam current
%é?iZ 19:12 06112‘21:35 06;‘13‘00:00 OSHR‘DZ:ZA 05/13‘0445 06/13 07:12 06/13 09:36

decaying from 250 mA, 1.37 GeV,
@ Normal LNLS LLRF setup;

2465

246

2455}

Cavity field (kV)
N
®
&

2445

244

Probe.

—— Monitor

243 ; ; ; ;
06/1219:12 06/1221:36 06/1300:00 06/13 02:24 06/13 04:48 06/13 07:12 06/13 09:36 -
Time (fr J ﬂ J-l 72




Field Stability 3: Analog LLRF

Cavity 1, peak-to-peak variation 1.60/1.58 degrees probe/monitor

| @ Overnight run, beam current
087 19:12 067122136 06/13 00:00 0671302240613 0448 06/1307:12 06/13 09:36 decay|ng from 250 mA’ 1 37 GGV,

@ Normal LNLS LLRF setup;
@ LLRF9 is only monitoring;

Cavity 2, peak-to-peak variation 5.14/5.13 degrees probe/monitor
T T T T T

Cavity phase (deg)

Probe
—— Monitor

06/1219:12 06/1221:36 06/1300:00 06/13 02:24 06/13 04:48 06/1307:12 06/13 09:36 [ T
Time oflinnz=




Field Stability 3: Analog LLRF

Cavity 1, peak-to-peak variation 1.60/1.58 degrees probe/monitor

| @ Overnight run, beam current
087 19:12 067122136 06/13 00:00 0671302240613 0448 06/1307:12 06/13 09:36 decay|ng from 250 mA’ 1 37 GGV,

@ Normal LNLS LLRF setup;
@ LLRF9 is only monitoring;

Cavity phase (deg)
s
N

Cavity 2, peak-to-peak variation 5.14/5.13 degrees probe/monitor
T T T T T

@ Quite a difference between
stations A and B.

Cavity phase (deg)

Probe

—— Monitor
06/1219:12 06/1221:36 06/1300:00 06/13 02:24 06/13 04:48 06/1307:12 06/13 09:36 [ T
Time oflinnz=




Field Stability 2: Analog LLRF

Cav 1 fwd|
—— Cav 2 fwd|

@ Cavity probe and forward phases
during coasting;

06/1219:12 06/1221:36 06/1300:00 06/1302:24 06/1304:48 06/1307:12 06/13 09:36
Time

g
4 e
£
&

Cav 1 fwd
Cav 1 probe

121 H H H H
08R3 1912 06122136 06130000 06/13 0224 06/13 0448 06/18 0712 06/13 09:36

~ 110F
g
&
&
105
Cav 2 fwd
Cav 2 probe

06/1219:12 06/1221:36 06/1300:00 06/1302:24 06/1304:48 06/13 07:12 06/13 09:36
Time
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Field Stability 2: Analog LLRF

—— Cav 1 fwd|
—— Cav 2 fwd|

@ Cavity probe and forward phases
during coasting;

@ Phase loop should keep forward
— phase constant;

06/1219:12 06/1221:36 06/1300:00 06/1302:24 06/1304:48 06/1307:12 06/13 09:36
Time

QLD

— Cav 1 fwd
—— Cav 1 probe|

121 H H H H
08R3 1912 06122136 06130000 06/13 0224 06/13 0448 06/18 0712 06/13 09:36

8
&
105 —/—‘—_—-—

—— Cav2fwd
—— Cav 2 probe|

06/1219:12 06/1221:36 06/13 00:00 06/13 02:24 06/13 04:48 06/13 07:12 06/13 09:36
Time (.r 3
=)
Q [ippeE




Field Stability 2: Analog LLRF

Cav 1 fwd|
—— Cav 2 fwd|

@ Cavity probe and forward phases
during coasting;

@ Phase loop should keep forward
— phase constant;

“ o @ Tuner loop should adjust cavity

— i frequency to keep probe in phase

Cav 1 probe

08R3 1912 @12 2136 081130000 05/*3‘02 24 06130448 06/13 0712 0B/13 09:36 W|th the forward,
ime

06/1219:12 06/1221:36 06/1300:00 06/1302:24 06/1304:48 06/1307:12 06/13 09:36
Time

8
&
105 —/—‘—_—-—

—— Cav2fwd
—— Cav 2 probe|

06/1219:12 06/1221:36 06/1300:00 06/1302:24 06/1304:48 06/13 07:12 06/13 09:36
Time

(ffmﬂéﬁ/
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Field Stability 2: Analog LLRF

121 H H H H
08R% 1912 06122136 06130000 06/13 0224 06/13 0448 06/18 0712 06/18

06/1219:12 06/1221:36 06/1300:00 06/1302:24 06/1304:48 06/13 07:12 06/13 09:36
Time

Cav 1 fwd|
—— Cav 2 fwd|

06/1219:12 06/1221:36 06/1300:00 06/1302:24 06/1304:48 06/13 07:12 06/13
Time

09:36

QLD

— Cav 1 fwd
Cav 1 probe

-

09:36

—— Cav2fwd
—— Cav 2 probe|

(Dimtel)

@ Cavity probe and forward phases
during coasting;

@ Phase loop should keep forward
phase constant;

@ Tuner loop should adjust cavity
frequency to keep probe in phase
with the forward;

@ Cavity 1 seems to have poor
phase loop regulation;

(
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Field Stability 2: Analog LLRF

Cav 1 fwd|
—— Cav 2 fwd|

@ Cavity probe and forward phases
during coasting;

@ Phase loop should keep forward

06/1219:12 06/1221:36 06/1300:00 06/1302:24 06/1304:48 06/1307:12 06/13 09:36
Time

— phase constant;

i o @ Tuner loop should adjust cavity
— frequency to keep probe in phase
08?8 o2 oerm2 2136 06713 00:00 oaqrzlsr‘:ez 24 06130448 06/13 0712 06/13 09:36 W|th the forward,

* ‘ ‘ ‘ ‘ ‘ @ Cavity 1 seems to have poor
ol phase loop regulation;

/ @ Cavity 2 has better phase loop

06/1219:12 06"2‘21'35 06/13‘00‘00 05/13‘0224 05/13‘0448 iggzlfgzg;\eﬁﬂgﬁe reQUIation, bUt poor tuner |oo )
" control. (ﬁ'jjﬂﬂ ' g.ﬁ/
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The Plan

@ Use open-loop transfer functions to determine Q, for each cavity;
@ Use design R/Q values, known unloaded quality factors;
@ From ws vs. V. studies establish precise probe calibrations;

@ Use zero current and beam data to calibrate forward power
channels;

@ For proper reflected power calibration need to quantify coupler
directivity.

(
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Precision Calibrations

Cavity Parameters

Gain = 1.1, Q = 9650.05, (W, - w_) = 1.90 kHz
5 T T T

Qo 40000
4 Q 9650.0
e TR T N 3 3.1415

-2 20
Frequency offset (kHz)
17=1118.41 ns, ¢ = 359.5 deg
200 T T T T T T T T

Phase (degrees)
o

-100

_200 | | | | |
-80 -60 -40 -20 0 20 40 60 80
Frequency offset (kHz)

el
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Precision Calibrations

Cavity Parameters

Gain = 1.1, Q= 10683.4, (W - w ) = -1.51 kHz

Data

Qo 40000
~] @ 9650.0
40 60 80 6 3.1415

-20 0 20
Frequency offset (kHz)
1=1123.44 ns, ¢ = 0.9 deg
T T T

Data

Qo 43000
, Q 10683.4
S 3 3.0249

_200 | | |
-80 -60 -40 -20 0 20 40 60 80
Frequency offset (kHz)

Phase (degrees)

e
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Probe Calibration

= 1 @ Scanned cavity 1 field down to
] 170 KV, captured synchrotron tune
l , using LFB tune tracking;

Synchrotron frequency

2550
25

T
T aasf
24t
2350

12:47 12:48 12:48 12:49 12:50 12:51 12:51 12:52 (O = 1
Time. I

(




Precision Calibrations

Probe Calibration

Correction factors: cavity 1 = 0.960, cavity 2 = 0.887
T T

T
O Measured (phase tracker)
—— Calculated

@ Scanned cavity 1 field down to
170 kV, captured synchrotron tune
using LFB tune tracking;

@ Fit ws to total voltage Vy
assuming:

e Stations are in phase (phased
earlier to maximize wg);

Synchrotron frequency (kHz)
I
i

380 390 400 410 440 450 460 470

420 430
Total gap voltage (kV)

o
of i I I l l i I ] e Momentum compaction, beam
. °c s energy, energy loss per turn as
: published.

420 430
Total gap voltage (kV) (

s i ;
o . )
~ 380 39‘0 Aéﬂ 41‘ [ . 3 AJlO 4.“10 A(;D 470 ﬁj‘ J ﬂ_rl éfr
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Precision Calibrations

Probe Calibration

Correction factors: cavity 1 = 0.960, cavity 2 = 0.887
T T

T
O Measured (phase tracker)

i @ Scanned cavity 1 field down to
5 170 KV, captured synchrotron tune
using LFB tune tracking;

@ Fit ws to total voltage Vy
assuming:
e Stations are in phase (phased
earlier to maximize wg);

380 390 400 410 440 450 460 470

420 430
Total gap voltage (kV)

‘ ‘ ‘ ‘ o
i i I I l l i I | e Momentum compaction, beam
s o5y energy, energy loss per turn as
5, | published.
] @ Obtain scaling factors for existing
o ] calibrations. , _4)
~'380 3§0 Aéo 41‘0 To‘a?égpw“:gég‘m A:‘:o 45‘10 Aéo 470 (ﬁ’ijLﬂ iJ/
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Power Calibration Without Beam

o ] @ Calculate cavity operating point
from freshly calibrated probe
signal

17:06:43 17:06:51 17:07:00 17:07:09 17:07:17 17:07:26 17:07:35 17:07:43
Time

Correction factors: fwd=1.3180, rev=1.1396 o Assum|ng on-resonance tun'ng
B | here, could include transient
detuning;

Power (kW)
>

17:06:43 17:06:51 17:07:00 17:07:09 17:07:17 17:07:26 17:07:35 17:07:43 (I 3
Time 0 Jﬂfl =
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Power Calibration Without Beam

171743 174722 171731 17:17:39 17:17:48 17:47:57  17:18:05 17:18:
Time

Correction factors: fwd=0.9195, rev=0.5930

—— FWD corr]
—— FWD calc|
——REV corr
—— REV calc

Power (kW)
S B SR

1717143 174722 174731 17:17:39 17:17:48 17:47:57 17:18:05  17:18:14
Time

(Dimtel)

®

@ Calculate cavity operating point
from freshly calibrated probe
signal

@ Assuming on-resonance tuning
here, could include transient
detuning;

@ Cavity 2 transient deviations are
due to slower tuner response.

(ffJﬂﬂ'iJJ)/
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Power Calibration Check With Beam

Beam current

@ Calculate operating points based

on cavity fields and phases, beam
current, all other accelerator
- parameters;

RN &z e Machine setup: EPU and 2T
5\ wiggler @ 22 mm, SCW @ 4 T;
\ 1 @ Matching forward power requires:

o Offsetting station phases by 2
degrees;

1648 19:12 21:36 0000 02:24 04:48 07:12 09:36 12:00 16148 19:12
Time

Reflected power
T T T

=G e Reducing energy loss per turn
g [ by 13 keV (132.33 keV).

16:48 19:12 21:36

1 - S
000 0226 %:: o712 099 1200 1648 112 (ﬁ'jjﬂfl éﬁ/
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Power Calibration Check With Beam

Beam current

Forward power

16:48 19:12 21:36 00:00 0224 04:48 07:12 09:36 12:00 16:48 19:12
Time

Cav1 corr
Cav2 corr|

_ B Cav1 calc|
: <
5 20 R
H
H
&

151 |

av2 calc

Reflected power
T T T

1648 19:12 21:36 0000 02:24 04:48 07:12 09:36 12:00 16148 19:12
Time

Cavi corr
Cav2 corr
15 Cavi cale
s Cav2 calc
5 1
=
H
&

16:48 19:12 21:36

00:00 02:24 04:48 07:12 09:36 12:00 16:48 19:12
Time

@ Calculate operating points based
on cavity fields and phases, beam
current, all other accelerator
parameters;

@ Machine setup: EPU and 2T
wiggler @ 22 mm, SCW @ 4 T;
@ Matching forward power requires:

o Offsetting station phases by 2
degrees;

e Reducing energy loss per turn
by 13 keV (132.33 keV).

@ Reflected power is skewed b ~
finite coupler directivity. ((oﬂm ' gﬁ/
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Standard Master Oscillator

R&S FSUP 8 Signal Source Analyzer LOCKE
Settings Resklual Nolse [T1] Phase Detector +40 B H
@ Absolute phase noise

measurements wit
R

Rohde&Schwartz FSUP

siuf Peldfer an
50—
oL
i
T W I I 0
B QJ&M 7]
(- s 120
\‘,\ .
— 1ap—{
W
LoopBWa00 He
I
1H 10+ 100He 10k 100 ke 3

@rmﬂéﬁ)

(
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Standard Master Oscillator

e—" @ Absolute phase noise
o LI measurements with
i S Rohde&Schwartz FSUP
p Tf @ Master oscillator
reference, —123 dBc/Hz
i h T @25 kHz;

I
1H 10k 100k 1He 10k 100k 3 M

@rmﬂéﬁ/

(
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Standard Master Oscillator

R&S FSUP 8 Signal Source Analyzer LOCKE
Settings Restdvat Nofes [T1] B
476.086760 11z (I PHI (10 - 3.0 ) 4.5 dBc Ss931 iz o6 dse
269 dom Residual P o385+ T4se17 he 0065 dse
Famone B Restawar FT B 7379 he s34z e
Trtermal Phase Bt RIS Jter FETE Tse R 7ser e
oise [dBe/He] Harker 1 [T1]
sae 19189453 Kz
e “117.4 dscMz
il Phbber ()
L \
RWR "y
s M,
rcmk | 1 I
L4 | |
AL )
ol i \J
a0 L
-150+
L
LoopBIE00 H2
it
1H 10H 100 H 10kt 100k

iGp12

@ Absolute phase noise
measurements with
Rohde&Schwartz FSUP

@ Master oscillator
reference, —123 dBc/Hz
@25 kHz;

@ Cavity 1, 250 kV, fb

optimized, —121 dBc/Hz
@25 kHz;

@rmﬂéﬁ/

(
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Standard Master Oscillator

R&S FSUP 8 Signal Source Analyzer LOCKE
Sattings Restdvat Nofes [T1] Spr Lt
[Signal Frequency 476.086760 11z (It AN (10 - 3.0 ) -45.6 dBc 55970 Wz ceees  dee
ignat Level “asidem Residuat P11 Gazse 179535 We 9406  dBc
[Eross Corriod Farmanie T Residual 711 178349 e 59821 We 7230 e
Thtermal RerTunsd  Intermal Phase Dat [RIS Jiter Ta773 0 39se0 mz 7072 e
Phase foise [d8c/Hz] Harker 1 [T1]
RE At s 191.89453 Kz
Top -30 dec/z -116.43 dBc/Hz
fuf Peiber (o)
-50-
‘ a
f— 70— 70— 561
ot ""ﬁ
i
2cR0R | | a0
-1 | 110—
s AR Lot ‘
130+ P i 130
-150+ 150-
=17 17
o i ‘H ‘
ot
1H 10H 100 H 10kt 100k 3MH
Frequency Offset
(Dimtel) iGp12

@ Absolute phase noise

measurements with
Rohde&Schwartz FSUP

Master oscillator
reference, —123 dBc/Hz
@25 kHz;

Cavity 1, 250 kV, fb
optimized, —121 dBc/Hz
@25 kHz;

Cavity 2, 250 kV, fb
optimized, —122 dBc/Hz

@25 kHz. (@gm}vﬂl
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Quiet Master Oscillator

RES FSUP & Signal Source Analyzer Lockt
Settings Reskiual Nofse [T1] Spur List

[Signal Frequency 476066780 MHz  [Int PHN (1.0 .. 3.0 11) -70.3 dBc 21140 Hz 9142 dec

Signal Level 5.22 dBm [Residual P11 24872 me 53563 Hz 6650 dBc

[Cross Corr Mode Farmonic 1 Resiaual FIT 71818 Az 179888 hz 8375 e

[Tnteral RefTuned  Internal Phase Det [RMS Jitter 01451 ps 239856 Mz -114.08 dbc

o 1 @ Much quieter reference,
Wt i 145 fs vs. 1.67 ps,
| & —137 dBc/Hz @25 kHz;

soul

2cLRWR

1H 10+ 100k 1He 10k 100k M

ol gl ‘iJ/

(
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Quiet Master Oscillator

RES FSUP & Signal Source Analyzer Lockt
Settings Reskiual Nofse [T1] Spur List

[Signal Frequency 476066780 HHz  [Int PHN (1.0 .. 3.0 1) -65.2 dBc 29579 Hz 5045  dB;

Signal Level -1.68 dBm [Residual P11 4738 me 55851 Hz 5763 dbe

[Cross Corr Mode Farmonic 1 Resiaual FIT 75.053 Az 55892 nz G661 dbe

[Tnteral RefTuned  Internal Phase Det [RMS Jitter 02610 ps 58955 Hz 8953 dbc

o 1 @ Much quieter reference,

‘ Rl 145 fs vs. 1.67 ps,
ol —137 dBc/Hz @25 kHz;
W LIl @ Cavity 1 probe, 250 kV, fb
B i optimized, —134 dBc/Hz
430+ { IR MW W @25 kHZ,

For'mﬂ'-i—ﬁ/

(



Quiet Master Oscillator

RES FSUP & Signal Source Analyzer Lockt
Settings Reskiual Nofse [T1] Spur List
476066780 MHz  [Int PHN (1.0 .. 3.0 1) -64.1 dBc 35555 H -96.80  dBc
-4.53 dBm [Residual P11 50467 m° 36078 Hz 5524 dbe
Farmonic 1 Resiaual FIT 117.663 Az 56003 Az 10077 dB
Tnternal Phase Det  [RMS Jitter 02945 ps 50005 H 6550 dbc

sws e @ Much quieter reference,
il T R 145 fs vs. 1.67 ps,
% T —137 dBc/Hz @25 kHz;

@ Cavity 1 probe, 250 kV, fb
| ‘ ‘ optimized, —134 dBc/Hz
oo HHH I | 1T | ;MWM}‘ U_q e @25 kHZ,

@ Cavity 2 probe, 250 kV, fb

™ optimized, —132 dBc/Hz
1He 10+ 100 He ﬁe;ut‘twm‘ 10k 100 ke 3MH @25 kHZ-

i 14
2cLRWR

160+

For'mﬂéﬁ/

(



Phase Noise

Quiet Master Oscillator, Analog LLRF

RES FSUP & Signal Source Analyzer Lockt
Settings Reskiual Nofse [T1] Spur List
[Signal Frequency 476066780 MHz  [Int PHN (1.0 .. 3.0 1) -58.0 dBc 58913 Hz 7575 dec
Signal Level -84 dBm [Residual P11 6102° 50002 Hz 6616 dbe
[Cross Corr Mode Farmonic 1 Resiaual FIT 75.664 Az 145814z 564 abC
[Tnteral RefTuned  Internal Phase Det [RMS Jitter 05962 ps 300008 Hz 7248 dec
Phase Hoise [dBe/Hz] Marker 1 [T1]
RFAtten  5dB 191.89453 kHz
Top -50 dBc/Hz -122.83 dBefHz

| 1 T

m il - e Cavity 1 probe,
| I | —107 dBc/Hz @25 kHz;

-130

-170

1H 10+ 100k 1He 10k 100k M

ﬁJm'e



R&S FSUP & Signal Source Analyzer

Phase Noise

Quiet Master Oscillator, Analog LLRF

-
Su e.mT)
.
[} Cavity 1 prob
S i @ Cavi robe,
i 14 A W}w ‘
107 dBc/Hz @25 kHz;
L il ! C/HzZ Z,
-100-
ERAll o ] @ Cavity 2 probe,
s
| 105 dBc/Hz @25 kHz.
| Jom
LoopBW200 He
1H 10H 100 Hz 1k 10kE 100 ke 2 MHz
Frequency Offset
‘(OJJ'II | —4‘3J/
(Dimtel) iGp12
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Summary

@ Successfully operated booster RF station with beam;

(ffmﬂéﬁ/
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Summary

@ Successfully operated booster RF station with beam;
@ Operated two storage ring stations using one LLRF9/476 unit;
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Summary

@ Successfully operated booster RF station with beam;
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Summary

@ Successfully operated booster RF station with beam;
@ Operated two storage ring stations using one LLRF9/476 unit;
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injection to ramping, ID closure, and coasting;

@ LLRF9/476 has much lower (27 dB) cavity field phase noise in the
vicinity of the synchrotron frequency;
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@ Modulation capabilities of LLRF9 were used to apply quadrupole
modulation to stored beam;
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Summary

@ Successfully operated booster RF station with beam;
@ Operated two storage ring stations using one LLRF9/476 unit;

@ Demonstrated stable operation through full machine cycle from
injection to ramping, ID closure, and coasting;

@ LLRF9/476 has much lower (27 dB) cavity field phase noise in the
vicinity of the synchrotron frequency;

@ Modulation capabilities of LLRF9 were used to apply quadrupole
modulation to stored beam;

@ Precise measurements of cavity signals enable better RF
calibrations and determinations of accelerator parameters.

el
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