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Setup

Day-by-Day Summary

@ Thursday (2016-6-9):
e Hardware setup and improvements;
@ Friday (2016-6-10):
o Set up all three planes at low current (1 mA);

@ Low current (up to 20 mA) measurements;
e Attempted to run with harmonic cavities at 150 mA.

@ Saturday (2016-6-11):

e Mapped longitudinal HOMs vs. cavity temperature;
e Pushed maximum stable current to 45 mA.
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Day-by-Day Summary (Continued)

@ Sunday (2016-6-12):
e Front-end calibrations;
e Single bunch radiation damping;
e Transverse studies at 40 mA;
@ Harmonic cavities at 40 mA.
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Day-by-Day Summary (Continued)

@ Sunday (2016-6-12):
e Front-end calibrations;
e Single bunch radiation damping;
e Transverse studies at 40 mA;
@ Harmonic cavities at 40 mA.

@ Monday (2016-6-13):

e Zero chromaticity optics;
e RF field control loops configured!!!
@ Measurements of transverse instabilities to 80 mA.
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@ Longitudinal Plane
@ System Characterization
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Longitudinal Calibration

@ Sweep phase shifter over 360°;

Longitudinal calibration, 17 B attenuation, 1.25 mA, 242.5 counlsimAldeg
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Longitudinal Calibration

@ Sweep phase shifter over 360°;
@ Record bunch signal (average);

Longitudinal calibration, 17 B attenuation, 1.25 mA, 242.5 counlsimAldeg
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Longitudinal Calibration

@ Sweep phase shifter over 360°;
@ Record bunch signal (average);

@ Calibration factor of
242.5 counts/mA/degree;
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Longitudinal Calibration

@ Sweep phase shifter over 360°;
@ Record bunch signal (average);

@ Calibration factor of
242.5 counts/mA/degree;

@ At 1 mA per bunch ADC LSB is
4 milli-degrees (114 fs);




Longitudinal Plane
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Longitudinal Calibration

@ Sweep phase shifter over 360°;
@ Record bunch signal (average);
@ Calibration factor of
242.5 counts/mA/degree;
@ At 1 mA per bunch ADC LSB is
4 milli-degrees (114 fs);

@ At 80 mA residual RMS is 2 ADC
counts or 18 milli-degrees
(504 fs).
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Radiation Damping

@ Insufficient kick voltage to
measure in time domain;
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Radiation Damping

@ Insufficient kick voltage to
measure in time domain;

@ Beam transfer function, single
bunch, 1.25 mA;
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ooe

Radiation Damping

. @ Insufficient kick voltage to
' measure in time domain;
@ Beam transfer function, single
) bunch, 1.25 mA;
R T Ly @ Zoomin: fs =981 Hz, Q = 76.6,
Trad = 2Q/ws = 24.9 ms;
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Longitudinal Plane
ooe

Radiation Damping

1 @ Insufficient kick voltage to
measure in time domain;

@ Beam transfer function, single
bunch, 1.25 mA;

@ Zoomin: fs =981 Hz, Q = 76.6,
Trad — 20/(4&.}3 == 24.9 mS;

@ Fit of the damped harmonic
oscillator response gives similar
values;
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Radiation Damping

AT T @ Insufficient kick voltage to
measure in time domain;

@ Beam transfer function, single
bunch, 1.25 mA;

@ Zoomin: fs =981 Hz, Q = 76.6,
Trad — 20/(4&.}3 == 24.9 mS;

@ Fit of the damped harmonic
oscillator response gives similar
values;

@ As does the narrowband fit;
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Radiation Damping

AT T @ Insufficient kick voltage to
measure in time domain;

@ Beam transfer function, single
bunch, 1.25 mA;

@ Zoomin: fs =981 Hz, Q = 76.6,
Trad — 20/(4&.}3 — 24.9 mS;

@ Fit of the damped harmonic
oscillator response gives similar
values;

@ As does the narrowband fit;
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@ Longitudinal Plane

@ Optimization of Cavity Temperatures
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a) Osc. Envelopes in Time Domain

b) Evolution of Modes
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@ Open loop measurement of
fastest modes;
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Grow/Damp

a) Osc. Envelopes in Time Domain b) Evolution of Modes

k.
3 , iy
Bunc:\crju - 0 Time (ms) Mode No. 0 n::en(ms)
@ Open loop measurement of
fastest modes;
@ Complex exponential fit to
open and closed loop sections

s Oslson s ot ) 1 Growt Rtes ost-brio) to extract the eigenva| ues;

1.0085
g 5 001
g 3
Z 1.0085, B
2 1.0085 =
H o 002
g 1.0085 &
&
1.0085 _003| —————
1
f65 166 168 169 165 166 168 169

167 167
Mode No. Mode No.

(



Longitudinal Plane
0®00000

Grow/Damp
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[\
/) @ Open loop measurement of
N / \ ‘ fastest modes;
e \ @ Complex exponential fit to
0 100 200 300 400 T‘miﬂzms) 600 700 800 900 1000

open and closed loop sections
to extract the eigenvalues;

@ Excellent fit to growth and
damping.
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Cavity 17 Temperature Scan
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@ Nominal 35°C setting tunes

. the HOM directly onto the
g sideband;
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Cavity 17 Temperature Scan

@ @m0
oammo

@ Nominal 35°C setting tunes

. the HOM directly onto the
§ sideband;
e @ Set cavity 17 to 33°C.
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Cavity 18 Temperature Scan

Cavity 18 temperature sweep

O Mode 175 (-1)
+_Mode 167 (-9)

@ Lowering the temperature
increases mode 167 growth
rate (too fast to capture);
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Cavity 18 Temperature Scan

Cavity 18 temperature sweep

[ O Mode 175 (-1)

ji +_Mode 167 (-9)

o @ Lowering the temperature
| increases mode 167 growth
; | rate (too fast to capture);
; , @ Set cavity 17 to 35.9°C,

4 § s moved to 33°C on Sunday.
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Cavity 20 Temperature Scan (February)

o e @ Moved cavity temperature
o€ ° from nominal 35 °C;
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Cavity 20 Temperature Scan (February)

oo @ Moved cavity temperature
. yil . from nominal 35 °C;
; ’ @ Growth rate peak seen

i % . around 45 °C — mode 167;
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Cavity 20 Temperature Scan (February)

oo @ Moved cavity temperature
. yil . from nominal 35 °C;
; ’ @ Growth rate peak seen

i % . around 45 °C — mode 167;

@ Detailed scan at 0.2 °C steps
reveals a clear resonance;

d41 442 443 444 445 446 447 448 449 45 451
Temperature (C)

esor - 8g
£ 685] o
£ 684]
g e °
< o
56 -4
3 g
2 682
681 )

de
441 442 443 444 445 446 447 448 449 45 451
Temperature (C)



Longitudinal Plane
0000@00

Cavity 20 Temperature Scan (February)

" , @ Moved cavity temperature

2 3 from nominal 35 °C;

§ @ Growth rate peak seen
around 45 °C — mode 167;
s i @ Detailed scan at 0.2 °C steps

reveals a clear resonance;
@ Fit second-order resonator

response:
Parameter | Value
Tcenter 44 .56 °C

Bandwidth 2.64 °C
Rad. damping | 18.5 ms~ )
Frfsell
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Qualitative Analysis

@ From cavity 20 temperature sweep we know that the tuning
coefficient for the HOM driving mode 167 is negative;

@ Detuning to compensate for beam loading lowers the
frequency of the fundamental mode, as well as the HOMs;

@ We lowered cavity temperatures to move the HOM away
from the synchrotron sideband (tuned the mode to higher
frequency);

@ With beam current increasing the mode tunes back to drive
the instabilities;

@ Should do the opposite - move to higher temperature.



Longitudinal Plane
000000®

Cavities and HOMs

@ We see the following eigenmodes dominating in the
longitudinal plane: 119, 167,172, 173, 175;

@ Using cavity temperature tuning we can associate mode
167 with main RF cavities, the rest - with harmonic cavities;

@ Most likely modes 172, 173, and 175 are driven by the
same HOM in three individual cavities, with slightly
different center frequencies.
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@ Longitudinal Plane

@ Stable Beam + Harmonic Cavities
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Observations

@ Filled to 40 mA with feedback in all planes;
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@ Filled to 40 mA with feedback in all planes;

@ Found that tuning cavities 13 and 15 produced growth rate
increases, used cavity 14;
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@ Found that tuning cavities 13 and 15 produced growth rate
increases, used cavity 14;

@ Tuned in in small steps, verified stability and recorded
synchrotron frequency;



Longitudinal Plane
ol 1}

Observations

@ Filled to 40 mA with feedback in all planes;

@ Found that tuning cavities 13 and 15 produced growth rate
increases, used cavity 14;

@ Tuned in in small steps, verified stability and recorded
synchrotron frequency;

@ When tuned in close to generate useful bunch lengthening,
the cavity heats up due to beam induced power and tunes
even closer to the third harmonic. Attention needed to
avoid run-away (tuning loop?).
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Observations

@ Filled to 40 mA with feedback in all planes;

@ Found that tuning cavities 13 and 15 produced growth rate
increases, used cavity 14;

@ Tuned in in small steps, verified stability and recorded
synchrotron frequency;

@ When tuned in close to generate useful bunch lengthening,
the cavity heats up due to beam induced power and tunes
even closer to the third harmonic. Attention needed to
avoid run-away (tuning loop?).

@ Reached 73 kV (205 mV readback), bunch length 150 ps
vs. 130 ps with cavities detuned;



Longitudinal Plane
ol 1}

Observations

@ Filled to 40 mA with feedback in all planes;

@ Found that tuning cavities 13 and 15 produced growth rate
increases, used cavity 14;

@ Tuned in in small steps, verified stability and recorded
synchrotron frequency;

@ When tuned in close to generate useful bunch lengthening,
the cavity heats up due to beam induced power and tunes
even closer to the third harmonic. Attention needed to
avoid run-away (tuning loop?).

@ Reached 73 kV (205 mV readback), bunch length 150 ps
vs. 130 ps with cavities detuned;

@ On Monday reached 80 mA, cavity 14 tuned in to 93 kV )
(260 mV), tried the other two, lost control. {@fmm gﬁ/
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Synchrotron Frequency vs. Harmonic Voltage

Mode 119 oscillation frequency vs. cavity 14 field o Voltage calculated from
8 .
™o, overheard conversion factor of
o

o 140 mV equal to 50 kV;
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Synchrotron Frequency vs. Harmonic Voltage
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Synchrotron Frequency vs. Harmonic Voltage

Mode 119 oscillation frequency vs. cavity 14 field o Voltage calculated from
° overheard conversion factor of
° 140 mV equal to 50 kV;
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° @ Mode 119 frequency in growth
° transient, possible tune shifts;

@ Measured with RF forward
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200 250 frequency changes due to
varying beam loading.
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e Transverse Planes
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e Transverse Planes
@ System Characterization
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Front-end Calibration: Transverse Plane

@ Set up controlled orbit bumps in X
and,

ADC coun

220

© ADC data (0 dB atten)]
—Ft
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Front-end Calibration: Transverse Plane

B
©
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ADC coun
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@ Set up controlled orbit bumps in X
and;

@ Measure bunch signal
displacement in ADC counts;
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Front-end Calibration: Transverse Plane

@ Set up controlled orbit bumps in X

and;

? @ Measure bunch signal
displacement in ADC counts;

@ At 2 mA per bunch ADC LSB
wross emnm corresponds to 0.9 and 0.5 um in
X and 'Y respectively;
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Front-end Calibration: Transverse Plane

@ Set up controlled orbit bumps in X
and;

@ Measure bunch signal
displacement in ADC counts;

@ At 2 mA per bunch ADC LSB
corresponds to 0.9 and 0.5 ym in
X and Y respectively;

@ Calibration factors from February
(1.5 GHz front end, different BPM):
0.688 counts/mA/um and
0.764 counts/mA/um (Y/X).



Transverse Planes
00000000

Outline

e Transverse Planes

@ lon Instabilities

(



Transverse Planes
000000000

Horizontal Plane

a) Osc. Envelopes in Time Domain b) Evolution of Modes

@ Typical features of ion-driven

o

o i A instability: .
BunchNo. Tine (m9) ModeNo. 0 e (1) o Non_exponentlal gI’OWth,

e Wide band of low frequency
negative modes;
o Low amplitude saturation

um

0 20 40 60 80 100 120

140 160
Mode No.



Transverse Planes
000000000

Horizontal Plane

a) Osc. Envelopes in Time Domain b) Evolution of Modes

o

@ Typical features of ion-driven

7 7 ; instability:

srento” 0 e Medto 00 e o Non-exponential growth;

e Wide band of low frequency
negative modes;

o Low amplitude saturation

Mean Mode Amplitudes

. @ Peak bunch amplitudes reach
: 14 um.
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Mode No.

um
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Vertical Plane

a) Osc. Envelopes in Time Domain b) Evolution of Modes.
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Vertical Plane

a) Osc. Envelopes in Time Domain b) Evolution of Modes.

I .
e @ Similar to X
o T e @ Much wider band of excited
modes;
Mean Mode Amplitudes

Mode No.
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Vertical Plane

a) Osc. Envelopes in Time Domain b) Evolution of Modes
8 154
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@ Similar to X

@ Much wider band of excited
modes;
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@ Peak bunch amplitudes reach
o ] 11 pm.
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Measurements at 70 mA, Zero Chromaticity

a) Osc. Envelopes in Time Domain b) Evolution of Modes ° Sti“ iOﬂS, 50_60 Mm
horizontally;
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Measurements at 70 mA, Zero Chromaticity

a) Osc. Envelopes in Time Domain b) Evolution of Modes ° Sti“ iOﬂS, 50_60 Mm
horizontally;

@ 35-40 pm vertically;
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Transverse Planes
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Measurements at 70 mA, Zero Chromaticity

a) Osc. Envelopes in Time Domain b) Evolution of Modes ° Sti” iOﬂS, 50_60 ,U/m
horizontally;

@ 35-40 um vertically;

@ With vertical feedback off at
60 mA, blowup is seen clearly
on the monitor (and has strong

et At effect on the lifetime);




Transverse Planes
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Measurements at 70 mA, Zero Chromaticity

a) Osc. Envelopes in Time Domain b) Evolution of Modes ° Sti“ iOﬂS, 50_60 Mm
horizontally;

@ 35-40 pm vertically;

@ With vertical feedback off at
60 mA, blowup is seen clearly
on the monitor (and has strong

s s effect on the lifetime);

@ Some evidence for resistive wall
modes in the vertical plane,
need a very uniform fill to
investigate more carefully.
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Residual Motion: X, Zero Chromaticity, 70 mA

From 0 to 3252 turns after feedback loop closure

@ Average modal amplitudes,
10 kHz band around vy;

Average amplitude (um)
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Transverse Planes
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Residual Motion: X, Zero Chromaticity, 70 mA

From 0 to 3252 turns after feedback loop closure

@ Average modal amplitudes,
10 kHz band around vy;

@ Full damping transient;

Average amplitude (um)
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Transverse Planes
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Residual Motion: X, Zero Chromaticity, 70 mA

From 100 to 3252 turns after feedback loop closure

@ Average modal amplitudes,
10 kHz band around vy;

@ Full damping transient;

@ From 100 turns after
transition;

Average amplitude (um)
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Transverse Planes
[e]e]e]e] Telelele)

Residual Motion: X, Zero Chromaticity, 70 mA

From 200 to 3252 turns after feedback loop closure

@ Average modal amplitudes,
10 kHz band around vy;

@ Full damping transient;

@ From 100 turns after
transition;

@ From 200 turns;

Average amplitude (um)
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Mode number



Transverse Planes
[e]e]e]e] Telelele)

Residual Motion: X, Zero Chromaticity, 70 mA

s From400‘103252tumsafterfeedback \o?pclosure ) Average modal amplltudes,
10 kHz band around vy;

@ Full damping transient;

@ From 100 turns after
transition;

@ From 200 turns;
@ From 400 turns;

Average amplitude (um)
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Mode number



Transverse Planes
[e]e]e]e] Telelele)

Residual Motion: X, Zero Chromaticity, 70 mA

From 800 to 3252 turns after feedback loop closure

Average modal amplitudes,
10 kHz band around vy;

Full damping transient;

From 100 turns after
transition;

From 200 turns;
From 400 turns;
From 800 turns;

Average amplitude (um)
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Transverse Planes
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Residual Motion: X, Zero Chromaticity, 70 mA

From 1600 to 3252 turns after feedback loop closure

Average modal amplitudes,
10 kHz band around vy;

@ Full damping transient;

@ From 100 turns after
transition;

From 200 turns;
From 400 turns;
From 800 turns;
From 1600 turns.

Average amplitude (um)
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Transverse Planes
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Residual Motion: X, Zero Chromaticity, 70 mA (Cont.)

From 0 to 2963 turns after feedback loop closure

@ Average modal amplitudes,
1.6 kHz band around vy;

Average amplitude (um)
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Mode number



Transverse Planes
[e]e]e]e]e] lelele)

Residual Motion: X, Zero Chromaticity, 70 mA (Cont.

From 0 to 2963 turns after feedback loop closure

@ Average modal amplitudes,
1.6 kHz band around vy;

@ Full damping transient;

Average amplitude (um)
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Transverse Planes
[e]e]e]e]e] lelele)

Residual Motion: X, Zero Chromaticity, 70 mA (Cont.

From 100 to 2963 turns after feedback loop closure

@ Average modal amplitudes,
1.6 kHz band around vy;

@ Full damping transient;

@ From 100 turns after
transition;

Average amplitude (um)

200

Mode number



Transverse Planes
[e]e]e]e]e] lelele)

Residual Motion: X, Zero Chromaticity, 70 mA (Cont.)

From 200 to 2963 turns after feedback loop closure

@ Average modal amplitudes,
1.6 kHz band around vy;

@ Full damping transient;

@ From 100 turns after
transition;

@ From 200 turns;

Average amplitude (um)

200

Mode number
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Residual Motion: X, Zero Chromaticity, 70 mA (Cont.)

s From400‘102963tumsafterfeedback \o?pclosure ) Average modal amplltudes,
1.6 kHz band around vy;

@ Full damping transient;

@ From 100 turns after
transition;

@ From 200 turns;
@ From 400 turns;

Average amplitude (um)

200

Mode number
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Residual Motion: X, Zero Chromaticity, 70 mA (Cont.)

From 800 to 2963 turns after feedback loop closure

Average modal amplitudes,
1.6 kHz band around vy;

Full damping transient;

From 100 turns after
transition;

From 200 turns;
From 400 turns;
From 800 turns;

Average amplitude (um)

150 200
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Residual Motion: X, Zero Chromaticity, 70 mA (Cont.)

From 1600 to 2963 turns after feedback loop closure

Average modal amplitudes,
1.6 kHz band around vy;

@ Full damping transient;

@ From 100 turns after
transition;

From 200 turns;
From 400 turns;
From 800 turns;
From 1600 turns.

Average amplitude (um)

200

Mode number
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Residual Motion: Y, Zero Chromaticity, 70 mA

@ Average modal amplitudes,
From 0 to 3252 turns after feedback loop closure 10 kHZ band around I/y,
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Transverse Planes
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Residual Motion: Y, Zero Chromaticity, 70 mA

@ Average modal amplitudes,
From 0 to 3252 turns after feedback loop closure 10 kHZ band around Vy,

@ Full damping transient;
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Residual Motion: Y, Zero Chromaticity, 70 mA

@ Average modal amplitudes,
From 100 to 3252 turns after feedback loop closure 10 kHZ band around Vy,

@ Full damping transient;

@ From 100 turns after
transition;

Average amplitude (um)
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Residual Motion: Y, Zero Chromaticity, 70 mA

@ Average modal amplitudes,
From 200 to 3252 turns after feedback loop closure 10 kHZ band around Vy,

@ Full damping transient;

@ From 100 turns after
transition;

@ From 200 turns;
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Residual Motion: Y, Zero Chromaticity, 70 mA

@ Average modal amplitudes,
From 400 to 3252 turns after feedback loop closure 10 kHZ band around Vy,

@ Full damping transient;

@ From 100 turns after
transition;

@ From 200 turns;
@ From 400 turns;
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Transverse Planes

0O00000e00

Residual Motion: Y, Zero Chromaticity, 70 mA

Average amplitude (um)

From 800 to 3252 turns after feedback loop closure
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@ Average modal amplitudes,
10 kHz band around vy;

Full damping transient;

From 100 turns after
transition;

From 200 turns;
From 400 turns;
From 800 turns;
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Residual Motion: Y, Zero Chromaticity, 70 mA

@ Average modal amplitudes,
From 1200 to 3252 turns after feedback loop closure 10 kHZ band around Vy,

@ Full damping transient;

@ From 100 turns after
transition;

From 200 turns;
From 400 turns;
From 800 turns;
From 1200 turns;
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Residual Motion: Y, Zero Chromaticity, 70 mA

@ Average modal amplitudes,
From 1600 to 3252 turns after feedback loop closure 10 kHZ band around Vy,

@ Full damping transient;

@ From 100 turns after
transition;

@ From 200 turns;
@ From 400 turns;
@ From 800 turns;
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Residual Motion: Y, Zero Chromaticity, 70 mA

@ Average modal amplitudes,
From 2000 to 3252 turns after feedback loop closure 10 kHZ band around Vy,

@ Full damping transient;

From 100 turns after
transition;

From 200 turns;
From 400 turns;
From 800 turns;
From 1200 turns;
From 1600 turns;
From 2000 turns.
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@ Average modal amplitudes,
From 100 to 2963 turns after feedback loop closure 16 kHZ band around Vy,

@ Full damping transient;
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Residual Motion: Y, Zero Chromaticity, 70 mA (Cont.)

@ Average modal amplitudes,
From 200 to 2963 turns after feedback loop closure 16 kHZ band arou nd Vy,

@ Full damping transient;

@ From 100 turns after
transition;

@ From 200 turns;
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Residual Motion: Y, Zero Chromaticity, 70 mA (Cont.)

@ Average modal amplitudes,
From 400 to 2963 turns after feedback loop closure 16 kHZ band arou nd Vy,

@ Full damping transient;

@ From 100 turns after
transition;

@ From 200 turns;
@ From 400 turns;
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Residual Motion: Y, Zero Chromaticity, 70 mA (Cont.)

@ Average modal amplitudes,
From 800 to 2963 turns after feedback loop closure 16 kHZ band arou nd Vy,

Full damping transient;

From 100 turns after
transition;

From 200 turns;
From 400 turns;
From 800 turns;
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Residual Motion: Y, Zero Chromaticity, 70 mA (Cont.)

@ Average modal amplitudes,
From 1200 to 2963 turns after feedback loop closure 16 kHZ band arou nd Vy,

@ Full damping transient;

@ From 100 turns after
transition;

@ From 200 turns;
@ From 400 turns;
°
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Average amplitude (um)
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Residual Motion: Y, Zero Chromaticity, 70 mA (Cont.)

@ Average modal amplitudes,
From 1600 to 2963 turns after feedback loop closure 16 kHZ band arou nd Vy,

@ Full damping transient;

@ From 100 turns after
transition;

@ From 200 turns;
@ From 400 turns;
@ From 800 turns;
°
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Residual Motion: Y, Zero Chromaticity, 70 mA (Cont.)

@ Average modal amplitudes,
From 2000 to 2963 turns after feedback loop closure 16 kHZ band arou nd Vy,

@ Full damping transient;

@ From 100 turns after
transition;

From 200 turns;
From 400 turns;
From 800 turns;
From 1200 turns;
From 1600 turns;
From 2000 turns.
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Tune Jitter

Vertical tune jitter

- @ Spectrogram: 4096 Nggr,
1585 | ' ‘ 4076 Overlap;

@ Every 20 ms vertical tune
dips down more than 500 Hz;
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Tune Jitter

Vertical tune jitter

- S @ Spectrogram: 4096 Nggr,
158.5 / ' ‘ 4076 Overlap;

@ Every 20 ms vertical tune
dips down more than 500 Hz;

@ Dip amplitude is

' underestimated, FFT length

1555 : b " is 7.2 ms;
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Tune Jitter

I |Hovizomal lune]mev‘ ‘ o Spectrogram: 4096 NFFT,
el g R 4076 overlap;
A "u @ Every 20 ms vertical tune
S (A |’“ dips down more than 500 Hz;
if:m \ ’ @ Dip amplitude is
& / underestimated, FFT length
o5 | ‘ l ' is 7.2 ms;
l e w oW 10(: @ Upward dips in X, still 20 ms
spacing.
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@ Resistive Wall Studies
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Horizontal Plane: Low Frequency Modes
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Horizontal damping measurements at 40 mA
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@ Selectively excite one mode,
observe open-loop damping;

@ Symmetric damping rate
shifts for plus and minus
modes;



Transverse Planes
(o] le}

Horizontal Plane: Low Frequency Modes
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Horizontal damping measurements at 40 mA

-1 0 1
Mode number

@ Selectively excite one mode,
observe open-loop damping;

@ Symmetric damping rate
shifts for plus and minus
modes;

@ Estimated radiation damping
time 4.5 ms;
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Horizontal Plane: Low Frequency Modes

@ Selectively excite one mode,

4 Puerage motal ampitudes over 0-35 me observe open-loop damping;
2 ] @ Symmetric damping rate
o - . shifts for plus and minus
805 , modes;
fos J @ Estimated radiation damping
£, ] time 4.5 ms;
02 ] @ Damping rates decreasing
e — from —1 to —3, likely towards

0 -8 -6
Mode number

a peak of ion-driven modes
around —9 (open-loop
amplitudes at 40 mA).
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Vertical Plane: Low Frequency Modes

Vertical damping measurements at 40 mA

01 o @ Not as symmetric as X,
o2 3 [ R ] considerable scatter for
oz i positive modes;
€ st ) e @ Estimated radiation
£ o ‘ % . ] damping rate 0.37 ms~"
® o4 % 1 (2.7 ms damping time);
K
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[ele] J

Vertical Plane: Low Frequency Modes

0o A?/erage m?dal amp‘litudesov‘ero—as r‘ns ) Not as Symmetric as X,
0sl considerable scatter for
207 : : positive modes;

@ Estimated radiation
damping rate 0.37 ms™!
(2.7 ms damping time);

@ Damping rates decreasing
U S | from —1 to —3, likely

Mode number towards a peak of ion-driven

modes around —25.
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@ Beam Transfer Functions and Radiation Damping
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Vertical Beam Transfer Function

T @ Transfer function measured at
0.8 mA in a single bunch,
production optics, excitation level
at 0.007 of full scale;
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@ Peak motion amplitude is 6.2 pum.
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Vertical Beam Transfer Function

0. @ Transfer function measured at
0.8 mA in a single bunch,
production optics, excitation level
at 0.007 of full scale;

@ Peak motion amplitude is 6.2 pum.

@ Synchro-betatron sidebands are
' clearly seen (more on that later);
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Vertical Beam Transfer Function

e Transfer function measured at
0.8 mA in a single bunch,
production optics, excitation level
at 0.007 of full scale;

@ Peak motion amplitude is 6.2 um.

@ Synchro-betatron sidebands are
clearly seen (more on that later);

@ Fit the central peak, very fast
damping time of 1.3 ms.
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Horizontal Beam Transfer Functions

@ 3 transfer functions measured at
peak amplitudes of 13, 29, and
56 um;
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Horizontal Beam Transfer Functions

@ 3 transfer functions measured at
peak amplitudes of 13, 29, and
56 um;

@ No hint of amplitude dependent
effects;
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Horizontal Beam Transfer Functions

@ 3 transfer functions measured at

peak amplitudes of 13, 29, and
56 um;
@ No hint of amplitude dependent
effects;
@ Central peak fit, not very
symmetric;
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Horizontal Beam Transfer Functions

@ 3 transfer functions measured at
peak amplitudes of 13, 29, and
56 um;

@ No hint of amplitude dependent
effects;

@ Central peak fit, not very
symmetric;

@ Fit a linear combination of 3
harmonic oscillators, imperfect;
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Horizontal Beam Transfer Functions

@ 3 transfer functions measured at
peak amplitudes of 13, 29, and
56 um;

@ No hint of amplitude dependent
effects;

@ Central peak fit, not very
symmetric;

@ Fit a linear combination of 3
harmonic oscillators, imperfect;

@ Sidebands are clearly
asymmetric, interesting physics

be | d. :
to be learne @U@
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@ Figures from “Commissioning of
Bunch-by-bunch Feedback
System for NSLS2 Storage
Ring”, W. Cheng, et. al., IBIC14;
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Transverse BTFs at NSLS-II
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Figures from “Commissioning of
Bunch-by-bunch Feedback
System for NSLS2 Storage
Ring”, W. Cheng, et. al., IBIC14;

Sidebands stay put, betatron
peak shifts with current;
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Transverse BTFs at NSLS-II
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@ Figures from “Commissioning of

Bunch-by-bunch Feedback
System for NSLS2 Storage
Ring”, W. Cheng, et. al., IBIC14;

@ Sidebands stay put, betatron
peak shifts with current;

@ Width also changes.
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Single Bunch Damping Measurements

Horizontal plane, single bunch at 0.85 mA

Data
—Fit

0 ] @ Drive beam at betatron tune in
o . % J closed loop, on trigger open the
o e s oo 075 loop and turn off excitation;

Time (ms)
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Single Bunch Damping Measurements

Horizontal plane, single bunch at 0.85 mA

50 72:‘37
0 ] @ Drive beam at betatron tune in
o . % J closed loop, on trigger open the
ot e, oo o079 loop and turn off excitation;
. =5 @ Horizontal damping time 2.8 ms;
04 6 8 10 12 14 16 (rr;mm %'U)/
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Single Bunch Damping Measurements

Horizontal plane, single bunch at 0.85 mA

50 72:‘67

0 ] @ Drive beam at betatron tune in

o . % J closed loop, on trigger open the
e, o e 1075 loop and turn off excitation;

. =5 @ Horizontal damping time 2.8 ms;

. ] @ Vertical damping time 2.3 ms.

04 6 8 10 12 14 16 (rr;mm %'U)/
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Radiation Damping Measurements Summary

Horizontal

Measurement description | Ip (MA) | 7 (ms)

Single bunch damping transient | 0.85 2.8
Single bunch BTF 0.83 1.5
Even fill modal damping 0.23 4.5

v

Measurement description | Ip (mA) | 7 (ms)

Single bunch damping transient | 0.79 2.3
Single bunch BTF 0.8 1.3
Even fill modal damping 0.23 2.7

Need to characterize damping time vs. bunch current.
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@ Front end at 1 GHz has good sensitivity, need
longitudinally stable beam to properly run feedback;



Summary

Summary

@ Reached 70 mA under feedback control, 80 mA in zero
chromaticity (limited by heating);

@ Cavity temperature tuning can be very helpful in improving
longitudinal stability;

@ Tuned in harmonic cavities with longitudinally stable beam,
demonstrated some bunch lengthening;

@ Front end at 1 GHz has good sensitivity, need
longitudinally stable beam to properly run feedback;
@ To investigate:

e Transverse dipole damping vs. beam current;
e lon instabilities and uneven fill patterns;
@ HOMSs of harmonic cavities.
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