Vertical Instability Studies at the MLS

F. Falkenstern¹, J. Feikes¹, M. Ries¹, P. Schmid¹, G. Wuestefeld¹, D. Teytelman², et. al.

¹BESSY, Berlin, Germany ²Dimtel, Inc., San Jose, CA, USA

November 4, 2011

Introduction	Qualitative Overview	Beam Studies	Summary
Metrology Light Source	Parameters		
Outline			

- Metrology Light Source Parameters
- Coupled-bunch Instabilities
- 2 Qualitative Overview
 - Feedback Operation
 - Qualitative Summary

3 Beam Studies

- Single Bunch Calibration
- Longitudinal Grow/Damp Measurements
- Vertical Grow/Damp Measurements

Qualitative Overview

Beam Studies

Metrology Light Source Parameters

Machine Parameters

- Small 500 MHz electron storage ring;
- Used by German national metrology institute;
- Very low energy injection, ramping;
- Too small for an ion clearing gap;
- Rich beam dynamics.

Parameters

Injection energy 105 MeV Operating energy 629 MeV Circumference 48 m Harmonic number 80 Beam current 200 mA RF frequency 500 MHz Tunes, X/Y 3.18/2.23 Natural emittance 110 nm rad Damping time, $\parallel \perp 11/22$ ms

(日)

Qualitative Overview

Beam Studies

Summary

Metrology Light Source Parameters

MLS Beamlines

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	Qualitative Overview	Beam Studies
Coupled-bunch Instabilities		

Outline

Introduction

- Metrology Light Source Parameters
- Coupled-bunch Instabilities

Qualitative Overview

- Feedback Operation
- Qualitative Summary

Beam Studies

- Single Bunch Calibration
- Longitudinal Grow/Damp Measurements
- Vertical Grow/Damp Measurements

Qualitative Overview

Beam Studies

Coupled-bunch Instabilities

Instabilities and Control

- Both transverse and longitudinal coupled-bunch instabilities are present in the MLS;
- Strong energy sensitivity;
- In the transverse plane the beam is very sensitive to the coupling;
- A full complement of bunch-by-bunch feedback systems is installed and commissioned.

Qualitative Overview

Beam Studies

Coupled-bunch Instabilities

Instabilities and Control

- Both transverse and longitudinal coupled-bunch instabilities are present in the MLS;
- Strong energy sensitivity;
- In the transverse plane the beam is very sensitive to the coupling;
- A full complement of bunch-by-bunch feedback systems is installed and commissioned.

Qualitative Overview

Beam Studies

Coupled-bunch Instabilities

Instabilities and Control

- Both transverse and longitudinal coupled-bunch instabilities are present in the MLS;
- Strong energy sensitivity;
- In the transverse plane the beam is very sensitive to the coupling;

・ コ ト ・ 雪 ト ・ 目 ト

• A full complement of bunch-by-bunch feedback systems is installed and commissioned.

Qualitative Overview

Beam Studies

Coupled-bunch Instabilities

Instabilities and Control

- Both transverse and longitudinal coupled-bunch instabilities are present in the MLS;
- Strong energy sensitivity;
- In the transverse plane the beam is very sensitive to the coupling;

 A full complement of bunch-by-bunch feedback systems is installed and commissioned.

Qualitative Overview

Beam Studies

Feedback Operation

Outline

- Metrology Light Source Parameters
- Coupled-bunch Instabilities
- 2 Qualitative Overview
 - Feedback Operation
 - Qualitative Summary

3 Beam Studies

- Single Bunch Calibration
- Longitudinal Grow/Damp Measurements
- Vertical Grow/Damp Measurements

Feedback Operation

Operating Approach

- Inject and ramp without feedback;
- Coupling knob dialed to 100% to reduce losses;
- At full energy, turn on the feedback systems $(Z \rightarrow X \rightarrow Y)$;
- Reduce the coupling knob to 10%-25%;
- Beam spot shrinks, lifetime drops;
- Sometimes coupling reduction still leaves the beam blown up;
- Transient excitations can often facilitate the transition.

Feedback Operation

Operating Approach

- Inject and ramp without feedback;
- Coupling knob dialed to 100% to reduce losses;
- At full energy, turn on the feedback systems $(Z \rightarrow X \rightarrow Y)$;
- Reduce the coupling knob to 10%-25%;
- Beam spot shrinks, lifetime drops;
- Sometimes coupling reduction still leaves the beam blown up;
- Transient excitations can often facilitate the transition.

Feedback Operation

Operating Approach

- Inject and ramp without feedback;
- Coupling knob dialed to 100% to reduce losses;
- At full energy, turn on the feedback systems $(Z \rightarrow X \rightarrow Y)$;
- Reduce the coupling knob to 10%-25%;
- Beam spot shrinks, lifetime drops;
- Sometimes coupling reduction still leaves the beam blown up;
- Transient excitations can often facilitate the transition.

(日)

Feedback Operation

Operating Approach

- Inject and ramp without feedback;
- Coupling knob dialed to 100% to reduce losses;
- At full energy, turn on the feedback systems $(Z \rightarrow X \rightarrow Y)$;
- Reduce the coupling knob to 10%-25%;
- Beam spot shrinks, lifetime drops;
- Sometimes coupling reduction still leaves the beam blown up;
- Transient excitations can often facilitate the transition.

(日)

Introduction

Qualitative Summary

Outline

Introduction

- Metrology Light Source Parameters
- Coupled-bunch Instabilities

2 Qualitative Overview

- Feedback Operation
- Qualitative Summary

Beam Studies

- Single Bunch Calibration
- Longitudinal Grow/Damp Measurements
- Vertical Grow/Damp Measurements

Qualitative Summary

- With all feedback systems operating the beam is stable long-term;
- Destabilizing transients (feedback tuning, grow/damps) can lead to the loss of control;
- Unstable motion in both X and Y;
- Impossible to recapture, see both centroid motion and blow-up;
- Need to raise the coupling, turn off the feedback systems to re-stabilize;
- Sensitivity to gain balancing between horizontal and vertical planes.
- Very strong sensitivity to fill patterns.

Qualitative Summary

- With all feedback systems operating the beam is stable long-term;
- Destabilizing transients (feedback tuning, grow/damps) can lead to the loss of control;
- Unstable motion in both X and Y;
- Impossible to recapture, see both centroid motion and blow-up;
- Need to raise the coupling, turn off the feedback systems to re-stabilize;
- Sensitivity to gain balancing between horizontal and vertical planes.
- Very strong sensitivity to fill patterns.

Qualitative Summary

- With all feedback systems operating the beam is stable long-term;
- Destabilizing transients (feedback tuning, grow/damps) can lead to the loss of control;
- Unstable motion in both X and Y;
- Impossible to recapture, see both centroid motion and blow-up;
- Need to raise the coupling, turn off the feedback systems to re-stabilize;
- Sensitivity to gain balancing between horizontal and vertical planes.
- Very strong sensitivity to fill patterns.

Qualitative Summary

- With all feedback systems operating the beam is stable long-term;
- Destabilizing transients (feedback tuning, grow/damps) can lead to the loss of control;
- Unstable motion in both X and Y;
- Impossible to recapture, see both centroid motion and blow-up;
- Need to raise the coupling, turn off the feedback systems to re-stabilize;
- Sensitivity to gain balancing between horizontal and vertical planes.
- Very strong sensitivity to fill patterns.

Qualitative Summary

- With all feedback systems operating the beam is stable long-term;
- Destabilizing transients (feedback tuning, grow/damps) can lead to the loss of control;
- Unstable motion in both X and Y;
- Impossible to recapture, see both centroid motion and blow-up;
- Need to raise the coupling, turn off the feedback systems to re-stabilize;
- Sensitivity to gain balancing between horizontal and vertical planes.
- Very strong sensitivity to fill patterns.

Qualitative Summary

- With all feedback systems operating the beam is stable long-term;
- Destabilizing transients (feedback tuning, grow/damps) can lead to the loss of control;
- Unstable motion in both X and Y;
- Impossible to recapture, see both centroid motion and blow-up;
- Need to raise the coupling, turn off the feedback systems to re-stabilize;
- Sensitivity to gain balancing between horizontal and vertical planes.
- Very strong sensitivity to fill patterns.

Qualitative Summary

- With all feedback systems operating the beam is stable long-term;
- Destabilizing transients (feedback tuning, grow/damps) can lead to the loss of control;
- Unstable motion in both X and Y;
- Impossible to recapture, see both centroid motion and blow-up;
- Need to raise the coupling, turn off the feedback systems to re-stabilize;
- Sensitivity to gain balancing between horizontal and vertical planes.
- Very strong sensitivity to fill patterns.

Qualitative Overview

Beam Studies

Single Bunch Calibration

Outline

- Metrology Light Source Parameters
- Coupled-bunch Instabilities
- 2 Qualitative Overview
 - Feedback Operation
 - Qualitative Summary

3 Beam Studies

- Single Bunch Calibration
- Longitudinal Grow/Damp Measurements
- Vertical Grow/Damp Measurements

Qualitative Overview

Beam Studies

Summary

Single Bunch Calibration

Front-end Calibration: Transverse Plane

- Set up controlled orbit bumps in X and Y;
- Measure bunch signal displacement in ADC counts;
- At 2 mA per bunch ADC LSB corresponds to 26 and 10 μm in X and Y respectively;

Qualitative Overview

Beam Studies

Summary

Single Bunch Calibration

Front-end Calibration: Transverse Plane

- Set up controlled orbit bumps in X and Y;
- Measure bunch signal displacement in ADC counts;
- At 2 mA per bunch ADC LSB corresponds to 26 and 10 μm in X and Y respectively;

Qualitative Overview

Beam Studies

Summary

Single Bunch Calibration

Front-end Calibration: Transverse Plane

- Set up controlled orbit bumps in X and Y;
- Measure bunch signal displacement in ADC counts;
- At 2 mA per bunch ADC LSB corresponds to 26 and 10 μm in X and Y respectively;

Qualitative Overview

Beam Studies

Single Bunch Calibration

- Single bunch at 0.23 mA excited with a swept-sine signal;
- Sweep span of 7 kHz around 1450 kHz;
- At the excitation amplitude of 0.05 FS tune is "pushed" by the swept excitation;
- Fit second-order beam response to the spectrum;
- Little tune shift at low amplitudes.

Qualitative Overview

Beam Studies

Single Bunch Calibration

- Single bunch at 0.23 mA excited with a swept-sine signal;
- Sweep span of 7 kHz around 1450 kHz;
- At the excitation amplitude of 0.05 FS tune is "pushed" by the swept excitation;
- Fit second-order beam response to the spectrum;
- Little tune shift at low amplitudes.

Qualitative Overview

Beam Studies

Single Bunch Calibration

- Single bunch at 0.23 mA excited with a swept-sine signal;
- Sweep span of 7 kHz around 1450 kHz;
- At the excitation amplitude of 0.05 FS tune is "pushed" by the swept excitation;
- Fit second-order beam response to the spectrum;
- Little tune shift at low amplitudes.

Qualitative Overview

Beam Studies

Single Bunch Calibration

- Single bunch at 0.23 mA excited with a swept-sine signal;
- Sweep span of 7 kHz around 1450 kHz;
- At the excitation amplitude of 0.05 FS tune is "pushed" by the swept excitation;
- Fit second-order beam response to the spectrum;
- Little tune shift at low amplitudes.

Qualitative Overview

Beam Studies

Single Bunch Calibration

- Single bunch at 0.23 mA excited with a swept-sine signal;
- Sweep span of 7 kHz around 1450 kHz;
- At the excitation amplitude of 0.05 FS tune is "pushed" by the swept excitation;
- Fit second-order beam response to the spectrum;
- Little tune shift at low amplitudes.

Introduction	

Qualitative Overview

Beam Studies

Longitudinal Grow/Damp Measurements

Outline

- Metrology Light Source Parameters
- Coupled-bunch Instabilities
- 2 Qualitative Overview
 - Feedback Operation
 - Qualitative Summary

3 Beam Studies

- Single Bunch Calibration
- Longitudinal Grow/Damp Measurements
- Vertical Grow/Damp Measurements

Qualitative Overview

Beam Studies

Summary

Longitudinal Grow/Damp Measurements

Longitudinal Growth Rates vs. Beam Current

- Fairly typical HOM-driven instabilities;
- Mode 43 open-loop eigenvalues vs. beam current;
- Threshold of 6 mA, zero current damping of 4.8 ms;
- Effective impedance of 39.2 k Ω at $nf_{\rm rf}$ + 268.6 MHz.

Qualitative Overview

Beam Studies

Summary

Longitudinal Grow/Damp Measurements

Longitudinal Growth Rates vs. Beam Current

- Fairly typical HOM-driven instabilities;
- Mode 43 open-loop eigenvalues vs. beam current;
- Threshold of 6 mA, zero current damping of 4.8 ms;
- Effective impedance of 39.2 k Ω at nf_{rf} + 268.6 MHz.

Qualitative Overview

Beam Studies

Summary

Longitudinal Grow/Damp Measurements

Longitudinal Growth Rates vs. Beam Current

- Fairly typical HOM-driven instabilities;
- Mode 43 open-loop eigenvalues vs. beam current;
- Threshold of 6 mA, zero current damping of 4.8 ms;
- Effective impedance of 39.2 kΩ at nf_{rf} + 268.6 MHz.

ヘロト ヘ戸ト ヘヨト ヘヨ

Introduction	

Qualitative Overview

Beam Studies

Vertical Grow/Damp Measurements

Outline

- Metrology Light Source Parameters
- Coupled-bunch Instabilities
- 2 Qualitative Overview
 - Feedback Operation
 - Qualitative Summary

3 Beam Studies

- Single Bunch Calibration
- Longitudinal Grow/Damp Measurements
- Vertical Grow/Damp Measurements

Qualitative Overview

Beam Studies

Summary

Vertical Grow/Damp Measurements

A Grow/Damp Measurement (Small)

- Mode -1 growing and damping at low amplitude (9 μm peak);
- Fast feedback damping;
- Exponential fits look good;
- Positive tune shift of 0.01;
- Small tune shift increase in open loop, some reactive shift from the feedback.

(日)

Qualitative Overview

Beam Studies

Summary

Vertical Grow/Damp Measurements

A Grow/Damp Measurement (Small)

- Mode -1 growing and damping at low amplitude (9 μm peak);
- Fast feedback damping;
- Exponential fits look good;
- Positive tune shift of 0.01;
- Small tune shift increase in open loop, some reactive shift from the feedback.

(日)

Qualitative Overview

Beam Studies

Summary

Vertical Grow/Damp Measurements

A Grow/Damp Measurement (Small)

- Mode -1 growing and damping at low amplitude (9 μm peak);
- Fast feedback damping;
- Exponential fits look good;
- Positive tune shift of 0.01;
- Small tune shift increase in open loop, some reactive shift from the feedback.

ヘロト ヘ戸ト ヘヨト ヘヨ

Qualitative Overview

Beam Studies

Summary

Vertical Grow/Damp Measurements

A Grow/Damp Measurement (Small)

- Mode -1 growing and damping at low amplitude (9 μm peak);
- Fast feedback damping;
- Exponential fits look good;
- Positive tune shift of 0.01;
- Small tune shift increase in open loop, some reactive shift from the feedback.

Qualitative Overview

Beam Studies

Summary

Vertical Grow/Damp Measurements

A Grow/Damp Measurement (Small)

- Mode -1 growing and damping at low amplitude (9 μm peak);
- Fast feedback damping;
- Exponential fits look good;
- Positive tune shift of 0.01;
- Small tune shift increase in open loop, some reactive shift from the feedback.

Qualitative Overview

Beam Studies

Summary

Vertical Grow/Damp Measurements

A Grow/Damp Measurement (Medium)

Mode -1 growing to 21 μm peak;

- Same initial frequency as before, large downward shift;
- Large tune shift starts at around 12 μm amplitude.

Qualitative Overview

Beam Studies

Summary

Vertical Grow/Damp Measurements

A Grow/Damp Measurement (Medium)

- Mode -1 growing to 21 μm peak;
- Same initial frequency as before, large downward shift;
- Large tune shift starts at around 12 μm amplitude.

Qualitative Overview

Beam Studies

Summary

Vertical Grow/Damp Measurements

A Grow/Damp Measurement (Medium)

- Mode -1 growing to 21 μm peak;
- Same initial frequency as before, large downward shift;

< □ > < □ > < □ > < □ >

 Large tune shift starts at around 12 μm amplitude.

Qualitative Overview

Beam Studies

Summary

Vertical Grow/Damp Measurements

A Grow/Damp Measurement (Large)

A large spike in the transient;

- Low mode -1 amplitude in open-loop, large spikes in closed loop;
- Initial part of mode -1 transient looks normal;
- Mode -2 starts tune shifted above 1650 kHz - tune shift of 0.03.

(日)

Qualitative Overview

Beam Studies

Summary

Vertical Grow/Damp Measurements

A Grow/Damp Measurement (Large)

- A large spike in the transient;
- Low mode -1 amplitude in open-loop, large spikes in closed loop;
- Initial part of mode -1 transient looks normal;
- Mode -2 starts tune shifted above 1650 kHz - tune shift of 0.03.

Qualitative Overview

Beam Studies

Summary

Vertical Grow/Damp Measurements

A Grow/Damp Measurement (Large)

MLS Y: mode -1 amplitude and frequency

- A large spike in the transient;
- Low mode -1 amplitude in open-loop, large spikes in closed loop;
- Initial part of mode -1 transient looks normal;
- Mode -2 starts tune shifted above 1650 kHz - tune shift of 0.03.

(日)

Qualitative Overview

Beam Studies

Summary

Vertical Grow/Damp Measurements

A Grow/Damp Measurement (Large)

MLS Y: mode -2 amplitude and frequency

- A large spike in the transient;
- Low mode -1 amplitude in open-loop, large spikes in closed loop;
- Initial part of mode -1 transient looks normal;
- Mode -2 starts tune shifted above 1650 kHz - tune shift of 0.03.

Qualitative Overview

Beam Studies

Summary

Vertical Grow/Damp Measurements

Vertical Growth Rates vs. Beam Current

At 110 mA beam stabilized;

- Had to lower the knob to 20%;
- Too few data points for any conclusions...

Qualitative Overview

Beam Studies

Summary

Vertical Grow/Damp Measurements

Vertical Growth Rates vs. Beam Current

- At 110 mA beam stabilized;
- Had to lower the knob to 20%;
- Too few data points for any conclusions...

(日)

Qualitative Overview

Beam Studies

Summary

Vertical Grow/Damp Measurements

Vertical Growth Rates vs. Beam Current

- At 110 mA beam stabilized;
- Had to lower the knob to 20%;
- Too few data points for any conclusions...

ヘロマ ヘヨマ ヘヨマ ヘ

Qualitative Overview

Beam Studies

Vertical Grow/Damp Measurements

Two States: A Hypothesis

- It almost seems that feedback is mis-tuned when transverse motion cannot be suppressed;
- Reasonable (±60 degrees) feedback phase adjustments do not help;
- Are we picking up signals from both the beam and the ions?
- Phase shift between electron and ion oscillations would explain control difficulties;
- In transients, ion motion makes the difference between clean damping and loss of control/spikes in closed-loop.

(日)

Qualitative Overview

Beam Studies

Vertical Grow/Damp Measurements

Two States: A Hypothesis

- It almost seems that feedback is mis-tuned when transverse motion cannot be suppressed;
- Reasonable (±60 degrees) feedback phase adjustments do not help;
- Are we picking up signals from both the beam and the ions?
- Phase shift between electron and ion oscillations would explain control difficulties;
- In transients, ion motion makes the difference between clean damping and loss of control/spikes in closed-loop.

(日)

Qualitative Overview

Beam Studies

Vertical Grow/Damp Measurements

Two States: A Hypothesis

- It almost seems that feedback is mis-tuned when transverse motion cannot be suppressed;
- Reasonable (±60 degrees) feedback phase adjustments do not help;
- Are we picking up signals from both the beam and the ions?
- Phase shift between electron and ion oscillations would explain control difficulties;
- In transients, ion motion makes the difference between clean damping and loss of control/spikes in closed-loop.

・ロット 今日 マイ 日マ

Qualitative Overview

Beam Studies

Vertical Grow/Damp Measurements

Two States: A Hypothesis

- It almost seems that feedback is mis-tuned when transverse motion cannot be suppressed;
- Reasonable (±60 degrees) feedback phase adjustments do not help;
- Are we picking up signals from both the beam and the ions?
- Phase shift between electron and ion oscillations would explain control difficulties;
- In transients, ion motion makes the difference between clean damping and loss of control/spikes in closed-loop.

(日)

Qualitative Overview

Beam Studies

Vertical Grow/Damp Measurements

Two States: A Hypothesis

- It almost seems that feedback is mis-tuned when transverse motion cannot be suppressed;
- Reasonable (±60 degrees) feedback phase adjustments do not help;
- Are we picking up signals from both the beam and the ions?
- Phase shift between electron and ion oscillations would explain control difficulties;
- In transients, ion motion makes the difference between clean damping and loss of control/spikes in closed-loop.

(日)

Qualitative Overview

Beam Studies

Vertical Grow/Damp Measurements

Ideas for Future Measurements

• Try DC clearing voltage at or near the feedback pickups;

- Use a second acquisition system to measure the signal between the bunches;
- Try transient measurements with large feedback phase shifts in the unstable/blown-up state.

Qualitative Overview

Beam Studies

Vertical Grow/Damp Measurements

Ideas for Future Measurements

- Try DC clearing voltage at or near the feedback pickups;
- Use a second acquisition system to measure the signal between the bunches;
- Try transient measurements with large feedback phase shifts in the unstable/blown-up state.

Qualitative Overview

Beam Studies

Vertical Grow/Damp Measurements

Ideas for Future Measurements

- Try DC clearing voltage at or near the feedback pickups;
- Use a second acquisition system to measure the signal between the bunches;
- Try transient measurements with large feedback phase shifts in the unstable/blown-up state.

- We have observed very rich transverse dynamics;
- Dramatically different behavior from machines at higher energy (or operating with ion clearing gap);
- Can we mine the data for more information? What else should we measure?
- What is the best way to test the "mixed signals" model?

- We have observed very rich transverse dynamics;
- Dramatically different behavior from machines at higher energy (or operating with ion clearing gap);
- Can we mine the data for more information? What else should we measure?
- What is the best way to test the "mixed signals" model?

- We have observed very rich transverse dynamics;
- Dramatically different behavior from machines at higher energy (or operating with ion clearing gap);
- Can we mine the data for more information? What else should we measure?
- What is the best way to test the "mixed signals" model?

- We have observed very rich transverse dynamics;
- Dramatically different behavior from machines at higher energy (or operating with ion clearing gap);
- Can we mine the data for more information? What else should we measure?
- What is the best way to test the "mixed signals" model?

