Vertical Instability Studies at the MLS

F. Falkenstern1, J. Feikes1, M. Ries1, P. Schmid1, G. Wuestefeld1, D. Teytelman2, et. al.

1BESSY, Berlin, Germany
2Dimtel, Inc., San Jose, CA, USA

November 4, 2011
Outline

1. Introduction
 - Metrology Light Source Parameters
 - Coupled-bunch Instabilities

2. Qualitative Overview
 - Feedback Operation
 - Qualitative Summary

3. Beam Studies
 - Single Bunch Calibration
 - Longitudinal Grow/Damp Measurements
 - Vertical Grow/Damp Measurements
Machine Parameters

- Small 500 MHz electron storage ring;
- Used by German national metrology institute;
- Very low energy injection, ramping;
- Too small for an ion clearing gap;
- Rich beam dynamics.

Parameters

- **Injection energy**: 105 MeV
- **Operating energy**: 629 MeV
- **Circumference**: 48 m
- **Harmonic number**: 80
- **Beam current**: 200 mA
- **RF frequency**: 500 MHz
- **Tunes, X/Y**: 3.18/2.23
- **Natural emittance**: 110 nm rad
- **Damping time, ||/⊥**: 11/22 ms
MLS Beamlines
Outline

1. Introduction
 - Metrology Light Source Parameters
 - Coupled-bunch Instabilities

2. Qualitative Overview
 - Feedback Operation
 - Qualitative Summary

3. Beam Studies
 - Single Bunch Calibration
 - Longitudinal Grow/Damp Measurements
 - Vertical Grow/Damp Measurements
Instabilities and Control

- Both transverse and longitudinal coupled-bunch instabilities are present in the MLS;
- Strong energy sensitivity;
- In the transverse plane the beam is very sensitive to the coupling;
- A full complement of bunch-by-bunch feedback systems is installed and commissioned.
Both transverse and longitudinal coupled-bunch instabilities are present in the MLS;

- Strong energy sensitivity;
- In the transverse plane the beam is very sensitive to the coupling;
- A full complement of bunch-by-bunch feedback systems is installed and commissioned.
Both transverse and longitudinal coupled-bunch instabilities are present in the MLS;

Strong energy sensitivity;

In the transverse plane the beam is very sensitive to the coupling;

A full complement of bunch-by-bunch feedback systems is installed and commissioned.
Coupled-bunch Instabilities

Instabilities and Control

- Both transverse and longitudinal coupled-bunch instabilities are present in the MLS;
- Strong energy sensitivity;
- In the transverse plane the beam is very sensitive to the coupling;
- A full complement of bunch-by-bunch feedback systems is installed and commissioned.
Operating Approach

- Inject and ramp without feedback;
- Coupling knob dialed to 100% to reduce losses;
- At full energy, turn on the feedback systems (Z→X→Y);
- Reduce the coupling knob to 10%–25%;
- Beam spot shrinks, lifetime drops;
- Sometimes coupling reduction still leaves the beam blown up;
- Transient excitations can often facilitate the transition.
Inject and ramp without feedback;
Coupling knob dialed to 100% to reduce losses;
At full energy, turn on the feedback systems (Z→X→Y);
Reduce the coupling knob to 10%–25%;
Beam spot shrinks, lifetime drops;
Sometimes coupling reduction still leaves the beam blown up;
Transient excitations can often facilitate the transition.
Inject and ramp without feedback;
Coupling knob dialed to 100% to reduce losses;
At full energy, turn on the feedback systems ($Z \rightarrow X \rightarrow Y$);
Reduce the coupling knob to 10%–25%;
Beam spot shrinks, lifetime drops;
Sometimes coupling reduction still leaves the beam blown up;
Transient excitations can often facilitate the transition.
Inject and ramp without feedback;
Coupling knob dialed to 100% to reduce losses;
At full energy, turn on the feedback systems ($Z \rightarrow X \rightarrow Y$);
Reduce the coupling knob to 10%–25%;
Beam spot shrinks, lifetime drops;
Sometimes coupling reduction still leaves the beam blown up;
Transient excitations can often facilitate the transition.
Outline

1. Introduction
 - Metrology Light Source Parameters
 - Coupled-bunch Instabilities

2. Qualitative Overview
 - Feedback Operation
 - Qualitative Summary

3. Beam Studies
 - Single Bunch Calibration
 - Longitudinal Grow/Damp Measurements
 - Vertical Grow/Damp Measurements
Qualitative Observations

- With all feedback systems operating the beam is stable long-term;
- Destabilizing transients (feedback tuning, grow/damps) can lead to the loss of control;
- Unstable motion in both X and Y;
- Impossible to recapture, see both centroid motion and blow-up;
- Need to raise the coupling, turn off the feedback systems to re-stabilize;
- Sensitivity to gain balancing between horizontal and vertical planes.
- Very strong sensitivity to fill patterns.
Qualitative Observations

- With all feedback systems operating the beam is stable long-term;
- Destabilizing transients (feedback tuning, grow/damps) can lead to the loss of control;
- Unstable motion in both X and Y;
- Impossible to recapture, see both centroid motion and blow-up;
- Need to raise the coupling, turn off the feedback systems to re-stabilize;
- Sensitivity to gain balancing between horizontal and vertical planes.
- Very strong sensitivity to fill patterns.
Qualitative Observations

- With all feedback systems operating the beam is stable long-term;
- Destabilizing transients (feedback tuning, grow/damps) can lead to the loss of control;
- Unstable motion in both X and Y;
 - Impossible to recapture, see both centroid motion and blow-up;
 - Need to raise the coupling, turn off the feedback systems to re-stabilize;
 - Sensitivity to gain balancing between horizontal and vertical planes.
- Very strong sensitivity to fill patterns.
Qualitative Observations

- With all feedback systems operating the beam is stable long-term;
- Destabilizing transients (feedback tuning, grow/damps) can lead to the loss of control;
- Unstable motion in both X and Y;
- Impossible to recapture, see both centroid motion and blow-up;
- Need to raise the coupling, turn off the feedback systems to re-stabilize;
- Sensitivity to gain balancing between horizontal and vertical planes.
- Very strong sensitivity to fill patterns.
Qualitative Observations

- With all feedback systems operating the beam is stable long-term;
- Destabilizing transients (feedback tuning, grow/damps) can lead to the loss of control;
- Unstable motion in both X and Y;
- Impossible to recapture, see both centroid motion and blow-up;
- Need to raise the coupling, turn off the feedback systems to re-stabilize;
- Sensitivity to gain balancing between horizontal and vertical planes.
- Very strong sensitivity to fill patterns.
Qualitative Observations

- With all feedback systems operating the beam is stable long-term;
- Destabilizing transients (feedback tuning, grow/damps) can lead to the loss of control;
- Unstable motion in both X and Y;
- Impossible to recapture, see both centroid motion and blow-up;
- Need to raise the coupling, turn off the feedback systems to re-stabilize;
- Sensitivity to gain balancing between horizontal and vertical planes.
- Very strong sensitivity to fill patterns.
Qualitative Overview

With all feedback systems operating the beam is stable long-term;
Destabilizing transients (feedback tuning, grow/damps) can lead to the loss of control;
Unstable motion in both X and Y;
Impossible to recapture, see both centroid motion and blow-up;
Need to raise the coupling, turn off the feedback systems to re-stabilize;
Sensitivity to gain balancing between horizontal and vertical planes.
Very strong sensitivity to fill patterns.
Outline

1. Introduction
 - Metrology Light Source Parameters
 - Coupled-bunch Instabilities

2. Qualitative Overview
 - Feedback Operation
 - Qualitative Summary

3. Beam Studies
 - Single Bunch Calibration
 - Longitudinal Grow/Damp Measurements
 - Vertical Grow/Damp Measurements
Single Bunch Calibration

Front-end Calibration: Transverse Plane

- Set up controlled orbit bumps in X and Y;
- Measure bunch signal displacement in ADC counts;
- At 2 mA per bunch ADC LSB corresponds to 26 and 10 μm in X and Y respectively;
Front-end Calibration: Transverse Plane

- Set up controlled orbit bumps in X and Y;
- Measure bunch signal displacement in ADC counts;
- At 2 mA per bunch ADC LSB corresponds to 26 and 10 μm in X and Y respectively;
Set up controlled orbit bumps in X and Y;

Measure bunch signal displacement in ADC counts;

At 2 mA per bunch ADC LSB corresponds to 26 and 10 µm in X and Y respectively;
Single bunch at 0.23 mA excited with a swept-sine signal;

- Sweep span of 7 kHz around 1450 kHz;
- At the excitation amplitude of 0.05 FS tune is "pushed" by the swept excitation;
- Fit second-order beam response to the spectrum;
- Little tune shift at low amplitudes.
Single bunch at 0.23 mA excited with a swept-sine signal;

- Sweep span of 7 kHz around 1450 kHz;
- At the excitation amplitude of 0.05 FS tune is "pushed" by the swept excitation;
- Fit second-order beam response to the spectrum;
- Little tune shift at low amplitudes.
Vertical Tune Measurement

- Single bunch at 0.23 mA excited with a swept-sine signal;
- Sweep span of 7 kHz around 1450 kHz;
- At the excitation amplitude of 0.05 FS tune is "pushed" by the swept excitation;
- Fit second-order beam response to the spectrum;
- Little tune shift at low amplitudes.
Single bunch calibration results:

- Single bunch at 0.23 mA excited with a swept-sine signal;
- Sweep span of 7 kHz around 1450 kHz;
- At the excitation amplitude of 0.05 FS tune is "pushed" by the swept excitation;
- Fit second-order beam response to the spectrum;
- Little tune shift at low amplitudes.
Single Bunch Calibration

Vertical Tune Measurement

- Single bunch at 0.23 mA excited with a swept-sine signal;
- Sweep span of 7 kHz around 1450 kHz;
- At the excitation amplitude of 0.05 FS tune is "pushed" by the swept excitation;
- Fit second-order beam response to the spectrum;
- Little tune shift at low amplitudes.
Outline

1. Introduction
 - Metrology Light Source Parameters
 - Coupled-bunch Instabilities

2. Qualitative Overview
 - Feedback Operation
 - Qualitative Summary

3. Beam Studies
 - Single Bunch Calibration
 - Longitudinal Grow/Damp Measurements
 - Vertical Grow/Damp Measurements
Longitudinal Growth Rates vs. Beam Current

- Fairly typical HOM-driven instabilities;
- Mode 43 open-loop eigenvalues vs. beam current;
- Threshold of 6 mA, zero current damping of 4.8 ms;
- Effective impedance of 39.2 kΩ at $nf_{rf} + 268.6$ MHz.
Longitudinal Growth Rates vs. Beam Current

- Fairly typical HOM-driven instabilities;
- Mode 43 open-loop eigenvalues vs. beam current;
- Threshold of 6 mA, zero current damping of 4.8 ms;
- Effective impedance of 39.2 kΩ at $n_{rf} + 268.6$ MHz.
Longitudinal Growth Rates vs. Beam Current

- Fairly typical HOM-driven instabilities;
- Mode 43 open-loop eigenvalues vs. beam current;
- Threshold of 6 mA, zero current damping of 4.8 ms;
- Effective impedance of 39.2 kΩ at $n f_{rf} + 268.6$ MHz.
Outline

1. Introduction
 - Metrology Light Source Parameters
 - Coupled-bunch Instabilities

2. Qualitative Overview
 - Feedback Operation
 - Qualitative Summary

3. Beam Studies
 - Single Bunch Calibration
 - Longitudinal Grow/Damp Measurements
 - Vertical Grow/Damp Measurements
Mode -1 growing and damping at low amplitude (9 µm peak);

Fast feedback damping;

Exponential fits look good;

Positive tune shift of 0.01;

Small tune shift increase in open loop, some reactive shift from the feedback.
A Grow/Damp Measurement (Small)

- Mode -1 growing and damping at low amplitude (9 μm peak);
- Fast feedback damping;
- Exponential fits look good;
- Positive tune shift of 0.01;
- Small tune shift increase in open loop, some reactive shift from the feedback.
A Grow/Damp Measurement (Small)

- Mode -1 growing and damping at low amplitude (9 µm peak);
- Fast feedback damping;
- Exponential fits look good;
- Positive tune shift of 0.01;
- Small tune shift increase in open loop, some reactive shift from the feedback.
A Grow/Damp Measurement (Small)

- Mode -1 growing and damping at low amplitude (9\,\mu m peak);
- Fast feedback damping;
- Exponential fits look good;
- Positive tune shift of 0.01;
- Small tune shift increase in open loop, some reactive shift from the feedback.
A Grow/Damp Measurement (Small)

- Mode -1 growing and damping at low amplitude (9 \(\mu\)m peak);
- Fast feedback damping;
- Exponential fits look good;
- Positive tune shift of 0.01;
- Small tune shift increase in open loop, some reactive shift from the feedback.
A Grow/Damp Measurement (Medium)

- Mode -1 growing to 21 \(\mu m \) peak;
- Same initial frequency as before, large downward shift;
- Large tune shift starts at around 12 \(\mu m \) amplitude.

MLS:oct2711/195827: l0=106.3132mA, Dsang=1, ShifGain=4, Modes 60, At Fs: G1=30.1261, G2=0, Ph1= -103.8825, Ph2=0, Brkpt=21000, Calib= 48.25.
Vertical Grow/Damp Measurements

A Grow/Damp Measurement (Medium)

- Mode -1 growing to 21 \(\mu m \) peak;
- Same initial frequency as before, large downward shift;
- Large tune shift starts at around 12 \(\mu m \) amplitude.
Vertical Grow/Damp Measurements

A Grow/Damp Measurement (Medium)

- Mode -1 growing to 21 μm peak;
- Same initial frequency as before, large downward shift;
- Large tune shift starts at around 12 μm amplitude.
A large spike in the transient;
- Low mode -1 amplitude in open-loop, large spikes in closed loop;
- Initial part of mode -1 transient looks normal;
- Mode -2 starts tune shifted above 1650 kHz - tune shift of 0.03.
In the study of vertical grow/damp measurements, the following observations were made:

- A large spike in the transient;
- Low mode -1 amplitude in open-loop, with large spikes in closed loop;
- Initial part of mode -1 transient looks normal;
- Mode -2 starts tune shifted above 1650 kHz, with a tune shift of 0.03.
A large spike in the transient;
- Low mode -1 amplitude in open-loop, large spikes in closed loop;
- Initial part of mode -1 transient looks normal;
- Mode -2 starts tune shifted above 1650 kHz - tune shift of 0.03.
A large spike in the transient;
- Low mode -1 amplitude in open-loop, large spikes in closed loop;
- Initial part of mode -1 transient looks normal;
- Mode -2 starts tune shifted above 1650 kHz - tune shift of 0.03.
Vertical Grow/Damp Measurements

Vertical Growth Rates vs. Beam Current

- At 110 mA beam stabilized;
- Had to lower the knob to 20%;
- Too few data points for any conclusions...
Vertical Grow/Damp Measurements

Vertical Growth Rates vs. Beam Current

- At 110 mA beam stabilized;
- Had to lower the knob to 20%;
- Too few data points for any conclusions...
Vertical Growth Rates vs. Beam Current

- At 110 mA beam stabilized;
- Had to lower the knob to 20%;
- Too few data points for any conclusions...
Two States: A Hypothesis

- It almost seems that feedback is mis-tuned when transverse motion cannot be suppressed;
- Reasonable (±60 degrees) feedback phase adjustments do not help;
- Are we picking up signals from both the beam and the ions?
- Phase shift between electron and ion oscillations would explain control difficulties;
- In transients, ion motion makes the difference between clean damping and loss of control/spikes in closed-loop.
It almost seems that feedback is mis-tuned when transverse motion cannot be suppressed;

Reasonable (±60 degrees) feedback phase adjustments do not help;

Are we picking up signals from both the beam and the ions?

Phase shift between electron and ion oscillations would explain control difficulties;

In transients, ion motion makes the difference between clean damping and loss of control/spikes in closed-loop.
Two States: A Hypothesis

- It almost seems that feedback is mis-tuned when transverse motion cannot be suppressed;
- Reasonable (±60 degrees) feedback phase adjustments do not help;
- Are we picking up signals from both the beam and the ions?
- Phase shift between electron and ion oscillations would explain control difficulties;
- In transients, ion motion makes the difference between clean damping and loss of control/spikes in closed-loop.
It almost seems that feedback is mis-tuned when transverse motion cannot be suppressed;

Reasonable (± 60 degrees) feedback phase adjustments do not help;

Are we picking up signals from both the beam and the ions?

Phase shift between electron and ion oscillations would explain control difficulties;

In transients, ion motion makes the difference between clean damping and loss of control/spikes in closed-loop.
Two States: A Hypothesis

- It almost seems that feedback is mis-tuned when transverse motion cannot be suppressed;
- Reasonable (± 60 degrees) feedback phase adjustments do not help;
- Are we picking up signals from both the beam and the ions?
- Phase shift between electron and ion oscillations would explain control difficulties;
- In transients, ion motion makes the difference between clean damping and loss of control/spikes in closed-loop.
Ideas for Future Measurements

- Try DC clearing voltage at or near the feedback pickups;
- Use a second acquisition system to measure the signal between the bunches;
- Try transient measurements with large feedback phase shifts in the unstable/blown-up state.
Ideas for Future Measurements

- Try DC clearing voltage at or near the feedback pickups;
- Use a second acquisition system to measure the signal between the bunches;
- Try transient measurements with large feedback phase shifts in the unstable/blown-up state.
Ideas for Future Measurements

- Try DC clearing voltage at or near the feedback pickups;
- Use a second acquisition system to measure the signal between the bunches;
- Try transient measurements with large feedback phase shifts in the unstable/blown-up state.
Summary

- We have observed very rich transverse dynamics;
- Dramatically different behavior from machines at higher energy (or operating with ion clearing gap);
- Can we mine the data for more information? What else should we measure?
- What is the best way to test the "mixed signals" model?
We have observed very rich transverse dynamics;

Dramatically different behavior from machines at higher energy (or operating with ion clearing gap);

Can we mine the data for more information? What else should we measure?

What is the best way to test the "mixed signals" model?
We have observed very rich transverse dynamics;
Dramatically different behavior from machines at higher energy (or operating with ion clearing gap);
Can we mine the data for more information? What else should we measure?
What is the best way to test the "mixed signals" model?
Summary

- We have observed very rich transverse dynamics;
- Dramatically different behavior from machines at higher energy (or operating with ion clearing gap);
- Can we mine the data for more information? What else should we measure?
- What is the best way to test the "mixed signals" model?