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Setup Measurements Summary

LLRF9/500 Setup

Set up LLRF9 (LLE1) to run two stations;
Two cavity probe signals (500 MHz);
Two cavity forward signals (500 MHz);
Two cavity reflected signals (500 MHz);
Two drive outputs (500 MHz);
Interlock input (24 V, DC supply bypass for now).

Galil DMC-2123 motion controller;
To be done: vacuum gauges, triggers, additional RF
monitors.
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Signal Levels And Calibrations

Iterative process, start from safe
attenuations, 20 dB on drive;
Procedure:

Tune cavity on resonance;
Adjust FWD coupling to match SSA;
Use Rs to calculate the probe level;
Detune as far as possible, calibrate
reflected;
Calculate full-scale levels for all channels,
adjust attenuation.

Drive attenuation set to reach 50 W from
drive amplifier at full LLRF9 output;
Measured 41/48 W for stations 1/2.



Setup Measurements Summary

Signal Levels And Calibrations

Iterative process, start from safe
attenuations, 20 dB on drive;
Procedure:

Tune cavity on resonance;
Adjust FWD coupling to match SSA;
Use Rs to calculate the probe level;
Detune as far as possible, calibrate
reflected;
Calculate full-scale levels for all channels,
adjust attenuation.

Drive attenuation set to reach 50 W from
drive amplifier at full LLRF9 output;
Measured 41/48 W for stations 1/2.



Setup Measurements Summary

Signal Levels And Calibrations

Iterative process, start from safe
attenuations, 20 dB on drive;
Procedure:

Tune cavity on resonance;
Adjust FWD coupling to match SSA;
Use Rs to calculate the probe level;
Detune as far as possible, calibrate
reflected;
Calculate full-scale levels for all channels,
adjust attenuation.

Drive attenuation set to reach 50 W from
drive amplifier at full LLRF9 output;
Measured 41/48 W for stations 1/2.



Setup Measurements Summary

Motion Control

Use custom Dimtel StreamDevice driver for Galil
DMC-21X3;
Standard problem with closed-loop controllers:

We need velocity control;
Galil loop is designed for position control;
Velocity control is an afterthought, implemented by
integrating velocity to generate setpoint position;
If the motor is slower, than desired (due to mechanical
load), position error accumulates;
Setting velocity to 0 does not stop motion!!!

Used velocity feedforward (FV) to directly control torque,
set KP/KI/KD to 0.
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Hardware Setup

LLRF9 (LLE3) in temporary configuration;
One cavity probe signal (500 MHz);
One cavity forward signal (500 MHz);
One cavity reflected signal (500 MHz);
One drive output (500 MHz);
Interlock input (24 V, DC supply bypass for now);
Trigger input (2.8 V).

Galil DMC-2183 motion controller with SDM-20620 (Micro
Stepper Motor Drive).
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Motion Control

Same device driver as in the storage ring;
Open loop control;
Need to limit maximum velocity, since steppers can slip
and stop moving at high velocities;
One residual issue:

Sometimes Galil controller stops the motor;
Happens when moving long distances (fully detuned to
resonance);
Not seen in the lab during driver development (DMC-2133);
Possibly some driver setting (SPM mode?).
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Motion Control (Continued)

Two controls: enable/disable and
velocity setpoint;
Driver supports readback of
position and velocity;
In the booster DCM-21X3
determines position by counting
stepper pulses;
No velocity readback in the
booster;
Status bits:

Moving
Enabled
Direction
Limit switches
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Cavity 2: Open Loop Transfer Function
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Measured using integrated
network analyzer;
November 2: cavity 2 tuned on
resonance;
Ql = 13470 → β = 2.1;
November 7: after some
operation,
Delay dropped from 704 to
595 ns — removed long cable at
the output of drive amplifier;
Ql = 14350 → β = 1.9???



Setup Measurements Summary

Cavity 2: Open Loop Transfer Function

−300 −200 −100 0 100 200 300
−40

−30

−20

−10

0

Frequency offset (kHz)

G
a

in
 (

d
B

)

Gain = 0.6, Q = 13470, (w
r
 − w

rf
) = −0.52 kHz

 

 

Data

Fit

−300 −200 −100 0 100 200 300
−200

−100

0

100

200

Frequency offset (kHz)

P
h

a
s
e

 (
d

e
g

re
e

s
)

τ = 704.095 ns, φ = 263.2 deg

 

 

Data

Fit

Measured using integrated
network analyzer;
November 2: cavity 2 tuned on
resonance;
Ql = 13470 → β = 2.1;
November 7: after some
operation,
Delay dropped from 704 to
595 ns — removed long cable at
the output of drive amplifier;
Ql = 14350 → β = 1.9???



Setup Measurements Summary

Cavity 2: Open Loop Transfer Function

−300 −200 −100 0 100 200 300
−40

−30

−20

−10

0

Frequency offset (kHz)

G
a

in
 (

d
B

)

Gain = 0.6, Q = 13470, (w
r
 − w

rf
) = −0.52 kHz

 

 

Data

Fit

−300 −200 −100 0 100 200 300
−200

−100

0

100

200

Frequency offset (kHz)

P
h

a
s
e

 (
d

e
g

re
e

s
)

τ = 704.095 ns, φ = 263.2 deg

 

 

Data

Fit

−300 −200 −100 0 100 200 300
−40

−30

−20

−10

0

Frequency offset (kHz)

G
a

in
 (

d
B

)

Gain = 0.3, Q = 14346.9, (w
r
 − w

rf
) = −0.14 kHz

 

 

Data

Fit

−300 −200 −100 0 100 200 300
−200

−100

0

100

200

Frequency offset (kHz)

P
h

a
s
e

 (
d

e
g

re
e

s
)

τ = 595.214 ns, φ = 358.2 deg

 

 

Data

Fit

Measured using integrated
network analyzer;
November 2: cavity 2 tuned on
resonance;
Ql = 13470 → β = 2.1;
November 7: after some
operation,
Delay dropped from 704 to
595 ns — removed long cable at
the output of drive amplifier;
Ql = 14350 → β = 1.9???



Setup Measurements Summary

Cavity 2: Open Loop Transfer Function

−300 −200 −100 0 100 200 300
−40

−30

−20

−10

0

Frequency offset (kHz)

G
a

in
 (

d
B

)

Gain = 0.6, Q = 13470, (w
r
 − w

rf
) = −0.52 kHz

 

 

Data

Fit

−300 −200 −100 0 100 200 300
−200

−100

0

100

200

Frequency offset (kHz)

P
h

a
s
e

 (
d

e
g

re
e

s
)

τ = 704.095 ns, φ = 263.2 deg

 

 

Data

Fit

−300 −200 −100 0 100 200 300
−40

−30

−20

−10

0

Frequency offset (kHz)

G
a

in
 (

d
B

)

Gain = 0.3, Q = 14346.9, (w
r
 − w

rf
) = −0.14 kHz

 

 

Data

Fit

−300 −200 −100 0 100 200 300
−200

−100

0

100

200

Frequency offset (kHz)

P
h

a
s
e

 (
d

e
g

re
e

s
)

τ = 595.214 ns, φ = 358.2 deg

 

 

Data

Fit

Measured using integrated
network analyzer;
November 2: cavity 2 tuned on
resonance;
Ql = 13470 → β = 2.1;
November 7: after some
operation,
Delay dropped from 704 to
595 ns — removed long cable at
the output of drive amplifier;
Ql = 14350 → β = 1.9???



Setup Measurements Summary

Cavity 2: Open Loop Transfer Function

−300 −200 −100 0 100 200 300
−40

−30

−20

−10

0

Frequency offset (kHz)

G
a

in
 (

d
B

)

Gain = 0.6, Q = 13470, (w
r
 − w

rf
) = −0.52 kHz

 

 

Data

Fit

−300 −200 −100 0 100 200 300
−200

−100

0

100

200

Frequency offset (kHz)

P
h

a
s
e

 (
d

e
g

re
e

s
)

τ = 704.095 ns, φ = 263.2 deg

 

 

Data

Fit

−300 −200 −100 0 100 200 300
−40

−30

−20

−10

0

Frequency offset (kHz)

G
a

in
 (

d
B

)

Gain = 0.3, Q = 14346.9, (w
r
 − w

rf
) = −0.14 kHz

 

 

Data

Fit

−300 −200 −100 0 100 200 300
−200

−100

0

100

200

Frequency offset (kHz)

P
h

a
s
e

 (
d

e
g

re
e

s
)

τ = 595.214 ns, φ = 358.2 deg

 

 

Data

Fit

Measured using integrated
network analyzer;
November 2: cavity 2 tuned on
resonance;
Ql = 13470 → β = 2.1;
November 7: after some
operation,
Delay dropped from 704 to
595 ns — removed long cable at
the output of drive amplifier;
Ql = 14350 → β = 1.9???



Setup Measurements Summary

Tuning Scan

Run the station in open loop,
fixed setpoint;
Move the cavity from limit
switch to limit switch;
At multiple points record:

Probe voltage and phase;
Forward and reflected
power and phase;
LLRF9 output power meter;
Tuner potentiometer;
Open-loop transfer function.

A lot of interesting plots!
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Tuner Position Potentiometer vs. Detuning
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Measurements
Linear fit (V

pot
=0.05×∆f−5.82) Nearly linear;

A deviation near zero
detuning is caused by wall
heating;
Slope should be
consistent, offset shifts
with temperature.
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Cavity Voltage vs. Detuning
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Cavity 2 voltage vs. detuning, open loop

Cavity voltage peaks
around 0;
Zooming in we see an
interesting effect — peak
voltage is around 650 Hz;
Cavity response fitting
offset?
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Waveguide Power vs. Detuning
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Forward

Reflected

Reflected power minimum
near 0;
Forward power reading
changes due to finite
directivity of couplers;
Drive level is constant;
Peak field and minimum
reflected are offset;
Offset minimum of
reflected power is
expected, directivity again.
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Waveguide Power vs. Detuning
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Offset minimum of
reflected power is
expected, directivity again.
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Time Domain Cavity Response
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Step drive to 0;
Natural cavity response;
Can extract quality factor
and detuning;
At the same tuning point
collected 20 transfer
function measurements;
Roughly 300 Hz offset
between frequency and
time domain.
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Natural cavity response;
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function measurements;
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between frequency and
time domain.
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Time Domain Cavity Response
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Step drive to 0;
Natural cavity response;
Can extract quality factor
and detuning;
At the same tuning point
collected 20 transfer
function measurements;
Roughly 300 Hz offset
between frequency and
time domain.
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Time Domain Cavity Response

−50 0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

Detuning (Hz)

C
o

u
n

t

Transfer function fit

−50 0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Detuning (Hz)

C
o

u
n

t

Damping transient fit

Step drive to 0;
Natural cavity response;
Can extract quality factor
and detuning;
At the same tuning point
collected 20 transfer
function measurements;
Roughly 300 Hz offset
between frequency and
time domain.



Setup Measurements Summary

Time Domain Cavity Response
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Quality Factor vs. Detuning
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A clear trend;
Could be a systematic
effect, seems unlikely;
Changes in Q with tuning
(and temperature) would
explain discrepancies seen
earlier.
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Quality Factor vs. Detuning
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Could be a systematic
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explain discrepancies seen
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Transfer Functions and Fits
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Closed Loop Rejection
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Direct

Direct+Integral

Closed-loop disturbance
rejection;
Around 16 dB proportional
rejection;
Loop gain of 5.1;
Integral loop improves
rejection below 10 kHz.
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Closed Loop Rejection
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Closed Loop Rejection
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Direct

Direct+Integral

Closed-loop disturbance
rejection;
Around 16 dB proportional
rejection;
Loop gain of 5.1;
Integral loop improves
rejection below 10 kHz.
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Summary

Successfully operated two storage ring and one booster
stations;
Calibrations are preliminary, better values with beam;
Booster setup needs permanent home.
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