SESAME Low-level RF Commissioning November 2–8, 2016

D. Teytelman¹, et. al.

¹Dimtel, Inc., San Jose, CA, USA

November 8, 2016

Outline

LLRF9/500 Setup

- Set up LLRF9 (LLE1) to run two stations;
 - Two cavity probe signals (500 MHz);
 - Two cavity forward signals (500 MHz);
 - Two cavity reflected signals (500 MHz);
 - Two drive outputs (500 MHz);
 - Interlock input (24 V, DC supply bypass for now).
- Galil DMC-2123 motion controller;
- To be done: vacuum gauges, triggers, additional RF monitors.

Signal Levels And Calibrations

ID=LLE1:BRD1	HELP EXIT	
INPUT CHANNEL 0 CAVITY 1 PROBE		
RAW AMPLITUDE	0.1 counts	
HW FULL SCALE	0.86 dam	
HW PHASE OFFSET COUPLING	-31.28 deg PHASE OFFSET	
66.00 db	(160.000 deg	
OUTPUT FORMAT	UNITS	
Voltage Power	jkv	
TRIP		
RESET	500.00 kv	
0.01 kv	163.17 deg	

- Iterative process, start from safe attenuations, 20 dB on drive;
- Procedure:
 - Tune cavity on resonance;
 - Adjust FWD coupling to match SSA;
 - Use *R_s* to calculate the probe level;
 - Detune as far as possible, calibrate reflected;
 - Calculate full-scale levels for all channels, adjust attenuation.
- Drive attenuation set to reach 50 W from drive amplifier at full LLRF9 output;

• Measured 41/48 W for stations 1/2.

Signal Levels And Calibrations

ID=LLE1:BRD1	HELP EXIT	
INPUT CHANNEL 0		
CAVITY 1 PROBE		
RAW AMPLITUDE	0.1 counts	
RAW PHASE	34.5	
HW FULL SCALE	0.86 dBm	
HW PHASE OFFSET	-31.28 deg	
COUPL ING	PHASE OFFSET	
66.00 db	360.000 deg	
OUTPUT FORMAT	UNITS	
Voltage Power	<u>]</u> kv	
TRIP		
RESET	500.00 kv	
0.01 kV	163.17 deg	

- Iterative process, start from safe attenuations, 20 dB on drive;
- Procedure:
 - Tune cavity on resonance;
 - Adjust FWD coupling to match SSA;
 - Use R_s to calculate the probe level;
 - Detune as far as possible, calibrate reflected;
 - Calculate full-scale levels for all channels, adjust attenuation.

(日)

 Drive attenuation set to reach 50 W from drive amplifier at full LLRF9 output;

• Measured 41/48 W for stations 1/2.

Signal Levels And Calibrations

ID=LLE1:BRD1	HELP	
INPUT CHANNEL 0		
CAVITY 1 PROBE		
RAV AMPLITUDE	0.1 counts	
RAW PHASE	34.5	
HW FULL SCALE	0.86 dBn	
HW PHASE OFFSET	-31.28 deg	
COUPLING	PHASE OFFSET	
66.00 da	(160.000 deg	
OUTPUT FORMAT	UNITS	
Voltage Power	kv	
TRIP		
RESET	500.00 kv	
0.01 kv	163.17 deg	

- Iterative process, start from safe attenuations, 20 dB on drive;
- Procedure:
 - Tune cavity on resonance;
 - Adjust FWD coupling to match SSA;
 - Use *R_s* to calculate the probe level;
 - Detune as far as possible, calibrate reflected;
 - Calculate full-scale levels for all channels, adjust attenuation.

- Drive attenuation set to reach 50 W from drive amplifier at full LLRF9 output;
- Measured 41/48 W for stations 1/2.

 Use custom Dimtel StreamDevice driver for Galil DMC-21X3;

• Standard problem with closed-loop controllers:

- We need velocity control;
- Galil loop is designed for position control;
- Velocity control is an afterthought, implemented by integrating velocity to generate setpoint position;
- If the motor is slower, than desired (due to mechanical load), position error accumulates;
- Setting velocity to 0 does not stop motion!!!
- Used velocity feedforward (FV) to directly control torque, set KP/KI/KD to 0.

 Use custom Dimtel StreamDevice driver for Galil DMC-21X3;

• Standard problem with closed-loop controllers:

- We need velocity control;
- Galil loop is designed for position control;
- Velocity control is an afterthought, implemented by integrating velocity to generate setpoint position;
- If the motor is slower, than desired (due to mechanical load), position error accumulates;
- Setting velocity to 0 does not stop motion!!!
- Used velocity feedforward (FV) to directly control torque, set KP/KI/KD to 0.

- Use custom Dimtel StreamDevice driver for Galil DMC-21X3;
- Standard problem with closed-loop controllers:
 - We need velocity control;
 - Galil loop is designed for position control;
 - Velocity control is an afterthought, implemented by integrating velocity to generate setpoint position;
 - If the motor is slower, than desired (due to mechanical load), position error accumulates;
 - Setting velocity to 0 does not stop motion!!!
- Used velocity feedforward (FV) to directly control torque, set KP/KI/KD to 0.

- Use custom Dimtel StreamDevice driver for Galil DMC-21X3;
- Standard problem with closed-loop controllers:
 - We need velocity control;
 - Galil loop is designed for position control;
 - Velocity control is an afterthought, implemented by integrating velocity to generate setpoint position;
 - If the motor is slower, than desired (due to mechanical load), position error accumulates;
 - Setting velocity to 0 does not stop motion!!!
- Used velocity feedforward (FV) to directly control torque, set KP/KI/KD to 0.

- Use custom Dimtel StreamDevice driver for Galil DMC-21X3;
- Standard problem with closed-loop controllers:
 - We need velocity control;
 - Galil loop is designed for position control;
 - Velocity control is an afterthought, implemented by integrating velocity to generate setpoint position;
 - If the motor is slower, than desired (due to mechanical load), position error accumulates;
 - Setting velocity to 0 does not stop motion!!!
- Used velocity feedforward (FV) to directly control torque, set KP/KI/KD to 0.

- Use custom Dimtel StreamDevice driver for Galil DMC-21X3;
- Standard problem with closed-loop controllers:
 - We need velocity control;
 - Galil loop is designed for position control;
 - Velocity control is an afterthought, implemented by integrating velocity to generate setpoint position;
 - If the motor is slower, than desired (due to mechanical load), position error accumulates;
 - Setting velocity to 0 does not stop motion!!!
- Used velocity feedforward (FV) to directly control torque, set KP/KI/KD to 0.

- Use custom Dimtel StreamDevice driver for Galil DMC-21X3;
- Standard problem with closed-loop controllers:
 - We need velocity control;
 - Galil loop is designed for position control;
 - Velocity control is an afterthought, implemented by integrating velocity to generate setpoint position;
 - If the motor is slower, than desired (due to mechanical load), position error accumulates;
 - Setting velocity to 0 does not stop motion!!!
- Used velocity feedforward (FV) to directly control torque, set KP/KI/KD to 0.

Outline

Booster Setup

Booster

Hardware Setup

• LLRF9 (LLE3) in temporary configuration;

- One cavity probe signal (500 MHz);
- One cavity forward signal (500 MHz);
- One cavity reflected signal (500 MHz);
- One drive output (500 MHz);
- Interlock input (24 V, DC supply bypass for now);
- Trigger input (2.8 V).
- Galil DMC-2183 motion controller with SDM-20620 (Micro Stepper Motor Drive).

- Same device driver as in the storage ring;
- Open loop control;
- Need to limit maximum velocity, since steppers can slip and stop moving at high velocities;
- One residual issue:
 - Sometimes Galil controller stops the motor;
 - Happens when moving long distances (fully detuned to resonance);
 - Not seen in the lab during driver development (DMC-2133);
 - Possibly some driver setting (SPM mode?).

Motion Control (Continued)

ID=LLE1:C1T1	HELP	
GALIL DMC-21X3 STREAM DEVICE		
VELOCITY COMMAND	0.000 deg/s	
ENCODER POSITION	315691.920 deg	
ENCODER VELOCITY	0.000 deg/s	
ANALOG INPUT	-5.549 V	
MOVING ENABLE I	DIR COWLIM OWLIM	
	см 🗾 🚽	
DISABLE ENABLE	STATUS 0x6D	

- Two controls: enable/disable and velocity setpoint;
- Driver supports readback of position and velocity;
- In the booster DCM-21X3 determines position by counting stepper pulses;

- No velocity readback in the booster;
- Status bits:
 - Moving
 - Enabled
 - Direction
 - Limit switches

Outline

Storage Ring Setup

Booster Setup

Setup	
	0000

- Measured using integrated network analyzer;
- November 2: cavity 2 tuned on resonance;

•
$$Q_l = 13470 \rightarrow \beta = 2.1;$$

- November 7: after some operation,
- Delay dropped from 704 to 595 ns — removed long cable at the output of drive amplifier;

(日)

• $Q_l = 14350 \rightarrow \beta = 1.9???$

Setup	
	0000

- Measured using integrated network analyzer;
- November 2: cavity 2 tuned on resonance;

•
$$Q_l = 13470 \rightarrow \beta = 2.1;$$

- November 7: after some operation,
- Delay dropped from 704 to 595 ns — removed long cable at the output of drive amplifier;

(日)

• $Q_l = 14350 \rightarrow \beta = 1.9???$

- Measured using integrated network analyzer;
- November 2: cavity 2 tuned on resonance;

•
$$Q_l = 13470 \rightarrow \beta = 2.1;$$

- November 7: after some operation,
- Delay dropped from 704 to 595 ns — removed long cable at the output of drive amplifier;

(日)

• $Q_l = 14350 \rightarrow \beta = 1.9???$

- Measured using integrated network analyzer;
- November 2: cavity 2 tuned on resonance;

•
$$Q_l = 13470 \rightarrow \beta = 2.1;$$

- November 7: after some operation,
- Delay dropped from 704 to 595 ns — removed long cable at the output of drive amplifier;

イロト イ理ト イヨト イヨト

- Measured using integrated network analyzer;
- November 2: cavity 2 tuned on resonance;

•
$$Q_l = 13470 \rightarrow \beta = 2.1;$$

- November 7: after some operation,
- Delay dropped from 704 to 595 ns — removed long cable at the output of drive amplifier;

•
$$Q_l = 14350 \rightarrow \beta = 1.9??$$

Tuning Scan

- Run the station in open loop, fixed setpoint;
- Move the cavity from limit switch to limit switch;
- At multiple points record:
 - Probe voltage and phase;
 - Forward and reflected power and phase;
 - LLRF9 output power meter;
 - Tuner potentiometer;
 - Open-loop transfer function.

(日)

• A lot of interesting plots!

Tuner Position Potentiometer vs. Detuning

- Nearly linear;
- A deviation near zero detuning is caused by wall heating;
- Slope should be consistent, offset shifts with temperature.

Cavity Voltage vs. Detuning

• Cavity voltage peaks around 0;

- Zooming in we see an interesting effect — peak voltage is around 650 Hz;
- Cavity response fitting offset?

Cavity Voltage vs. Detuning

- Cavity voltage peaks around 0;
- Zooming in we see an interesting effect — peak voltage is around 650 Hz;
- Cavity response fitting offset?

Cavity Voltage vs. Detuning

- Cavity voltage peaks around 0;
- Zooming in we see an interesting effect — peak voltage is around 650 Hz;
- Cavity response fitting offset?

• Reflected power minimum near 0;

- Forward power reading changes due to finite directivity of couplers;
- Drive level is constant;
- Peak field and minimum reflected are offset;
- Offset minimum of reflected power is expected, directivity again

- Reflected power minimum near 0;
- Forward power reading changes due to finite directivity of couplers;
- Drive level is constant;
- Peak field and minimum reflected are offset;
- Offset minimum of reflected power is expected, directivity again

- Reflected power minimum near 0;
- Forward power reading changes due to finite directivity of couplers;
- Drive level is constant;
- Peak field and minimum reflected are offset;
- Offset minimum of reflected power is expected, directivity again

- Reflected power minimum near 0;
- Forward power reading changes due to finite directivity of couplers;
- Drive level is constant;
- Peak field and minimum reflected are offset;
- Offset minimum of reflected power is expected, directivity again

- Reflected power minimum near 0;
- Forward power reading changes due to finite directivity of couplers;
- Drive level is constant;
- Peak field and minimum reflected are offset;
- Offset minimum of reflected power is expected, directivity again.

Step drive to 0;

- Natural cavity response;
- Can extract quality factor and detuning;
- At the same tuning point collected 20 transfer function measurements;
- Roughly 300 Hz offset between frequency and time domain.

ヘロト ヘ戸ト ヘヨト ヘヨ

- Step drive to 0;
- Natural cavity response;
- Can extract quality factor and detuning;
- At the same tuning point collected 20 transfer function measurements;
- Roughly 300 Hz offset between frequency and time domain.

ヘロト ヘ戸ト ヘヨト ヘヨ

- Step drive to 0;
- Natural cavity response;
- Can extract quality factor and detuning;
- At the same tuning point collected 20 transfer function measurements;
- Roughly 300 Hz offset between frequency and time domain.

- Step drive to 0;
- Natural cavity response;
- Can extract quality factor and detuning;
- At the same tuning point collected 20 transfer function measurements;
- Roughly 300 Hz offset between frequency and time domain.

ヘロマ ヘヨマ ヘヨマ ヘ

- Step drive to 0;
- Natural cavity response;
- Can extract quality factor and detuning;
- At the same tuning point collected 20 transfer function measurements;
- Roughly 300 Hz offset between frequency and time domain.

< ロ > < 同 > < 三 >

Quality Factor vs. Detuning

A clear trend;

- Could be a systematic effect, seems unlikely;
- Changes in Q with tuning (and temperature) would explain discrepancies seen earlier.

Quality Factor vs. Detuning

- A clear trend;
- Could be a systematic effect, seems unlikely;
- Changes in Q with tuning (and temperature) would explain discrepancies seen earlier.

Quality Factor vs. Detuning

- A clear trend;
- Could be a systematic effect, seems unlikely;
- Changes in Q with tuning (and temperature) would explain discrepancies seen earlier.

ヘロマ ヘヨマ ヘヨマ ヘ

Transfer Functions and Fits

Outline

- Storage Ring Setup
- Booster Setup

Closed-loop disturbance rejection;

- Around 16 dB proportional rejection;
- Loop gain of 5.1;
- Integral loop improves rejection below 10 kHz.

- Closed-loop disturbance rejection;
- Around 16 dB proportional rejection;
- Loop gain of 5.1;
- Integral loop improves rejection below 10 kHz.

- Closed-loop disturbance rejection;
- Around 16 dB proportional rejection;
- Loop gain of 5.1;
- Integral loop improves rejection below 10 kHz.

- Closed-loop disturbance rejection;
- Around 16 dB proportional rejection;
- Loop gain of 5.1;
- Integral loop improves rejection below 10 kHz.

- Successfully operated two storage ring and one booster stations;
- Calibrations are preliminary, better values with beam;
- Booster setup needs permanent home.

- Successfully operated two storage ring and one booster stations;
- Calibrations are preliminary, better values with beam;
- Booster setup needs permanent home.

- Successfully operated two storage ring and one booster stations;
- Calibrations are preliminary, better values with beam;
- Booster setup needs permanent home.

