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Demonstration Summary

> Monday7 May 1: Activities
» Started from unpacking hardware already on site;
» Set up the power amplifiers and the front-end prototype;
» Traveled to the airport to pick up the rest of the hardware;
» Set up transverse feedback in Y, then X.
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» Collected open-loop, closed-loop, grow/damp, and excite/damp data in Y;
» Started on the improvised longitudinal setup with 400 MHz iGp12 clock.
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Demonstration Summary

» Monday, May 1: Activities
» Started from unpacking hardware already on site;
» Set up the power amplifiers and the front-end prototype;
» Traveled to the airport to pick up the rest of the hardware;
» Set up transverse feedback in Y, then X.
» Tuesday, May 2:
» Performed vertical calibration;
» Explored an improvised setup with 13 dB more gain;
» Collected open-loop, closed-loop, grow/damp, and excite/damp data in Y;
» Started on the improvised longitudinal setup with 400 MHz iGp12 clock.

» Wednesday, May 3:
» Completed longitudinal setup, demonstrated damping, collected some modal
information;
» Ultimately unsuccessful in controlling longitudinally unstable beam — too little
power;
» Continued with transverse feedback setup at 536 MeV and bunch cleaning.
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Vertical Calibration

Calibration at 371 mA, slope 2.2 counts/mm/mA
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Vertical Calibration

Calibration at 371 mA, slope 2.2 counts/mm/mA
T T T T Transverse

o | » Measure ADC mean shift with an [
orbit bump;

» Prototype front-end is at 400 MHz,
relatively low sensitivity;

» At nominal bunch current one ADC
count is 36 um;

» We tested an improvised higher
gain setup, roughly
9.8 counts/mm/maA,;
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Vertical Calibration

Calibration at 371 mA, slope 2.2 counts/mm/mA

Transverse

o | » Measure ADC mean shift with an [
orbit bump;

» Prototype front-end is at 400 MHz,
relatively low sensitivity;

» At nominal bunch current one ADC
count is 36 um;

» We tested an improvised higher
gain setup, roughly

‘ ‘ ‘ ‘ ‘ ‘ 9.8 counts/mm/mA,;
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Vertical bump (mm) » One count then corresponds to
8 um.




a) Osc. Envelopes in Time Domain

Vertical Plane with Pulsed Kicker

b) Evolution of Modes
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Feedback
» Open-loop acquisition with the
~ o1 injection (?) kicker firing; Transverse
g ;v-rmﬂ,n\ﬂ £ I Planes
E o.osjj I il E 005 12 > 320 mA;
(i %
0 J - 0 ///
Bunch No.10 0 Time (ms) Mode No. 00 Time (ms)
Maximum Mode Amplitudes
E 107 o o
o
©,004,° o°°o°o°°°°°°°o° 69000
0 5 10 5 2 2 ‘
Mode No.

30




Vertical Plane with Pulsed Kicker

a) Osc. Envelopes in Time Domain

b) Evolution of Modes
» Open-loop acquisition with the
injection (?) kicker firing;

L > 320 mA;

==

%/% > Mode zero (all bunches moving
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Vertical Plane with Pulsed Kicker

Modal amplitudes in response to a kicker pulse
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Feedback

Open-loop acquisition with the
injection (?) kicker firing;
320 mA;

Mode zero (all bunches moving
together) and mode -1 (resistive
wall) are excited;

Transverse
Planes

Main observation — very fast
disappearance of the centroid
signal;

Signal re-appears (re-coherence)
after approximately one
synchrotron period;




Vertical Plane with Pulsed Kicker

Modal amplitudes in response to a kicker pulse
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Open-loop acquisition with the
injection (?) kicker firing;
320 mA;

Mode zero (all bunches moving
together) and mode -1 (resistive
wall) are excited;

Transverse
Planes

Main observation — very fast
disappearance of the centroid
signal;

Signal re-appears (re-coherence)
after approximately one
synchrotron period;

Consistent with high vertical
chromaticity.
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Closed Loop Spectrum Vertical Plane

may0323/163025: Signal power spectrum averaged (quadratic) over all bunches

> At 1.51 GeV and 350 mA; Transverse

Planes

Counts

1 P i i i L i i
340 350 360 370 380 390 400 410 420 430
Freq (kHz)




Closed Loop Spectrum Vertical Plane Feedback

may0323/163025: Signal power spectrum averaged (quadratic) over all bunches

> At 1.51 GeV and 350 mA; Transverse

Planes

» Typical notch due to feedback
action — inverse of the beam
response;

Counts

1 P i i i L i i
340 350 360 370 380 390 400 410 420 430
Freq (kHz)




Closed Loop Spectrum Vertical Plane Feedback

may0323/163025: Signal power spectrum averaged (quadratic) over all bunches
T T T T T T

> At 1.51 GeV and 350 mA; Transverse

Planes

» Typical notch due to feedback
action — inverse of the beam
response;

» Wide at high bunch currents,

indicative of tune spreads and high
damping;

Counts

1 P i i i L i i
340 350 360 370 380 390 400 410 420 430
Freq (kHz)




Feedback

Closed Loop Spectrum Vertical Plane

may0323/144828: Signal power spectrum averaged (quadratic) over all bunches
T T T T T T T

> At 1.51 GeV and 350 mA; Transverse

Planes

» Typical notch due to feedback
action — inverse of the beam
response;

» Wide at high bunch currents,
indicative of tune spreads and high
damping;

» At lower currents see multiple
notches at syncho-betatron
sidebands in addition to the
betatron line, consistent with high
chromaticity.
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Mode 0 Excite/Damp

a) Osc. Envelopes in Time Domain

b) Evolution of Modes
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Mode 0 Excite/Damp

a) Osc. Envelopes in Time Domain b) Evolution of Modes

g 04‘ "“;LM ‘u‘m WWW W A
“oos. ‘ ‘l\‘h\“”‘\‘\"”\ W“ ‘}N “‘ 002 e
Pl LA
Bunch No // Anme (ms) Mode No. QO(

Amplitude (mm)

=
— 100
s)

Tme (m:

Time (ms)

120

140

Feedback

Transverse
Planes

» Mode 0 excited in the closed-loop
setting by frequency sweep of
10 kHz around the betatron tune;

> At 100 ms excitation and feedback
are turned off;




Mode 0 Excite/Damp

Feedback
may0223/144747 Data, Fit and Error for Mode #0
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|
004 '; » Mode 0 excited in the closed-loop
': setting by frequency sweep of
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", are turned off;
o A\ > Vertical oscillation signal decays
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rapidly.




Mode 21 Grow/Damps

a) Osc. Envelopes in Time Domain

b) Evolution of Modes
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» True grow/damp measurement,
feedback is off for 50 ms;
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Mode 21 Grow/Damps

a) Osc. Envelopes in Time Domain b) Evolution of Modes
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Transverse
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» True grow/damp measurement,
feedback is off for 50 ms;

» See mode 21 (33.9 MHz);




Mode 21 Grow/Damps
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» True grow/damp measurement,
feedback is off for 50 ms;

» See mode 21 (33.9 MHz);

» No growth dynamics, almost step
change;




Mode 21 Grow/Damps

a) Osc. Envelopes in Time Domain b) Evolution of Modes
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Transverse
Planes

True grow/damp measurement,
feedback is off for 50 ms;

See mode 21 (33.9 MHz);

No growth dynamics, almost step
change;

Similar response with a 120 ms
open loop period;




Mode 21 Grow/Damps
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Planes

True grow/damp measurement,
feedback is off for 50 ms;

See mode 21 (33.9 MHz);

No growth dynamics, almost step
change;

Similar response with a 120 ms
open loop period;

Saturates around 0.5 pm;
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Transverse
Planes

True grow/damp measurement,
feedback is off for 50 ms;

See mode 21 (33.9 MHz);

No growth dynamics, almost step
change;

Similar response with a 120 ms
open loop period;

Saturates around 0.5 pm;

Need to be confirmed that this is
real beam motion.




Measurements Above the Threshold Feedback

a) Osc. Envelopes in Time Domain b) Evolution of Modes
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Measurements Above the Threshold Feedback

a) Osc. Envelopes in Time Domain b) Evolution of Modes
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Measurements Above the Threshold Feedback

a) Osc. Envelopes in Time Domain b) Evolution of Modes
M\ﬁ ,
. OWW ~ ‘,MM L%
g e ,w_‘,‘““' '
g oo Longitudinal
Plane
unch No. ime (ms lode No. 0 ime (ms! . . . gy
arertal” 0 e o 00 Tmew ), Longitudinal instabilities are seen
above ~ 4 mA
» An example at 302 mA with
harmonic cavities tuned in, mode 8;
Mean Mode Amplitudes
o ° ! » Lower current — mode 10.
2002 o °
5 [o]
ERTTI o °° °o o 54
ooo ° . 00° © 060000° o
0 5; 1‘0 ‘ 2‘0 25 3‘0

15
Mode No.




Damping Transients Below the Threshold Feedback

a) Osc. Envelopes in Time Domain b) Evolution of Modes
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» The method:
» Each mode is excited to a small

amplitude using CW sinusoidal
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Damping Transients Below the Threshold Feedback
a) Osc. Envelopes in Time Domain b) Evolution of Modes
» The method:

O-W Mt » Each mode is excited to a small

S0zl VA s amplitude using CW sinusoidal o
S AR kS . . Longitudinal
0 N excitation; Plane
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Damping Transients Below the Threshold

may0323/111546 Data, Fit and Error for Mode #10
0.25 T T T T T
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02 “\vwm\r ] amplitude using CW sinusoidal ongtcinal
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o0 RN 1 > In a transient measurement
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Y turned off;
» Open-loop damping transient is
o5k analyzed to estimate the modal
frequency and the damping rate.
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Damping Transients Below the Threshold

may0323/111502 Data, Fit and Error for Mode #10
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\\ ‘ ‘ » The method:

» Each mode is excited to a small
\\_ D | amplitude using CW sinusoidal Lonaitugi
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excitation and feedback are
turned off;
» Open-loop damping transient is
\wy, ] analyzed to estimate the modal
Vam frequency and the damping rate.
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» Mode 10 closed loop;
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Damping Transients Below the Threshold

a) Osc. Envelopes in Time Domain b) Evolution of Modes
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» Much faster damping;




Damping Transients Below the Threshold roedbeck
a) Osc. Envelopes in Time Domain b) Evolution of Modes
MW, » The method:

» Each mode is excited to a small
amplitude using CW sinusoidal Longiucinal
excitation; Plane

> In a transient measurement
excitation and feedback are
turned off;

» Open-loop damping transient is
analyzed to estimate the modal
frequency and the damping rate.

» Mode 10 open loop;
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CE W % w w m o > Mode 10 closed loop;
» Much faster damping;

» Feedback excites mode 2 a bit in
this improvised imperfect setup.




Damping Transients, Mode -10 (AKA 22) Feedback

a) Osc. Envelopes in Time Domain b) Evolution of Modes

» Physical impedance is Hermitian. If
mode N is shifted towards instability,
mode h — N should see an almost e
identical shift in the opposite direction sl
(damping);
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Damping Transients, Mode -10 (AKA 22) Feedback

a) Osc. Envelopes in Time Domain b) Evolution of Modes

» Physical impedance is Hermitian. If
mode N is shifted towards instability,
mode h — N should see an almost e
identical shift in the opposite direction sl
(damping);

arb. units
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Damping Transients, Mode -10 (AKA 22) Feedback

may0323/112707 Data, Fit and Error for Mode #22

003 —— : : : ‘ » Physical impedance is Hermitian. If
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Damping Transients, Mode -10 (AKA 22) Feedback

may0323/112707 Data, Fit and Error for Mode #22

0035 : : : : ; » Physical impedance is Hermitian. If

Data
Fit

ogall= = Error | mode N is shifted towards instability,
mode h — N should see an almost e
identical shift in the opposite direction sl
(damping);

» Mode 22 open loop;

» Open loop damping of 432 s~ 1;

» Mode 10 damps at 5 s~ ';
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Damping Transients, Mode -10 (AKA 22) Feedback

may0323/112707 Data, Fit and Error for Mode #22

0035 : : : : ; » Physical impedance is Hermitian. If

Data
Fit

= Eror | mode N is shifted towards instability,

mode h — N should see an almost ——

identical shift in the opposite direction sl

(damping);

Mode 22 open loop;

Open loop damping of 432 s~ 1;

Mode 10 damps at5s~';

‘ ‘ ‘ ‘ Average (radiation) damping of

time s 218 s~' (4.6 ms), impedance shifts
+213s71.

» Modal frequencies 4468 and
4484 Hz, reactive shifts of
+50 rads~'.
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Damping Transients, Mode 6

a) Osc. Envelopes in Time Domain b) Evolution of Modes
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Damping Transients, Mode 6 Foedback

may0323/112922 Data, Fit and Error for Mode #6
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Damping Transients, Mode 6 Foedback

may0323/111546 Data, Fit and Error for Mode #10
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Damping Transients, Mode 6 Foedback

may0323/112707 Data, Fit and Error for Mode #22
0.035 T T T T T T

—— Data
Fit
0.03H —\‘ = Error B
Longitudinal
0.025¢ : : 7 Plane
2 002 . » Mode 6, have not seen it
g | unstable, possibly some
' impedance;
oot 1 > N\g=—173+ix 274462 s 1;
e SRR N I » MNo=-5+ix2r4468 s ';
EA W > oo = —432 + i x 274484 s~ 1.
o ‘ ‘ ,
0 1 2 6 7

Time (ms)




Feedback

Bunch Cleaning

| ID=IGPF:TEST

» Bunch cleaning is done by iGp12 as

Activities
BUNCH CLEBNING follows:
SAVED VALUE .
LTINS —— > Apply normal negative feedback to the
bunches we want to keep;
FRACTIONAL TUNE |9.210000 25. 0000 kHz
FRACTIONAL SPAN |9.oo01000 0.0000 knz Cleaning
PERTOD 100000 us G0 Summary

CLEAN PATTERN a1:20

P




Bunch Cleaning

ID=IGPF:TEST

BUNCH CLEAHTIHNG

SAVED VALUE
AMPLITUDE 0.5002
FRACTIONAL TUNE |9.210000 25. 0000 kHz
FRACTIONAL SPAN | %.o001000 0.0000 kHz
PERTOD 10000.0 us 0.0 us

CLEAN PATTERN a1:20

P

» Bunch cleaning is done by iGp12 as
follows:

> Apply normal negative feedback to the
bunches we want to keep;

» Turn off the feedback for the bunches to be
removed;

Feedback

Cleaning

Summary




Bunch Cleaning

ID=IGPF:TEST

BUNCH CLEAHTIHNG

SAVED VALUE
AMPLITUDE 0.5002
FRACTIONAL TUNE |9.210000 25. 0000 kHz
FRACTIONAL SPAN | %.o001000 0.0000 kHz
PERTOD 10000.0 us 0.0 us

CLEAN PATTERN a1:20

P

» Bunch cleaning is done by iGp12 as
follows:

> Apply normal negative feedback to the
bunches we want to keep;

> Turn off the feedback for the bunches to be
removed;

> Apply sinusoidal excitation with frequency
sweeping to the bunches we are cleaning.

Feedback

Cleaning

Summary
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Bunch Cleaning

Fill pattern after cleaning out multiple bunches
T T T T T

» Bunch cleaning is done by iGp12 as

H[o%o00®  Co® Lo %0 follows:
—_ of
s 2 > Apply normal negative feedback to the
g 1 bunches we want to keep;
£ : | > Turn off the feedback for the bunches to be 8
100l o006 000 — removed; Cleaning
ol % % %99 | > Apply sinusoidal excitation with frequency
uneh number sweeping to the bunches we are cleaning.
- » Two power amplifiers (10 and 25 W) enable
12 S T cleaning at the injection energy;
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Bunch number




Bunch Cleaning Feadback

Fill pattern after cleaning out 4 bunches
T T T T

o 1 %o » Bunch cleaning is done by iGp12 as
e ] follows:
@ -50F © . 1 H
H ‘Zz 00,0, | > Apply normal negative feedback to the
- o
g .l % o o bunches we want to keep;
§ ool ° B ] > Turn off the feedback for the bunches to be il
250} °oO°°° 90090, 1 removed; Cleaning
B T S — > Apply sinusoidal excitation with frequency

Bunch number

sweeping to the bunches we are cleaning.
» Two power amplifiers (10 and 25 W) enable

: ] cleaning at the injection energy;
Ial o ] » An example of a fill pattern with a 5 bucket
R . o 1 gap and a camshaft bunch in the middle
oo S L B (bunches 28,29,31,32 cleaned);
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Bunch Cleaning

Fill pattern after cleaning out 4 bunches
T T T

%o Tog » Bunch cleaning is done by iGp12 as
o ] follows:
° » Apply normal negative feedback to the
o0 o | bunches we want to keep;
0 0% | > Turn off the feedback for the bunches to be il
o o ; i removed; Cleaning
S > Apply sinusoidal excitation with frequency
Buneh numoer sweeping to the bunches we are cleaning.

» Two power amplifiers (10 and 25 W) enable
cleaning at the injection energy;

° % ] » An example of a fill pattern with a 5 bucket
; | gap and a camshaft bunch in the middle
°, © %0 7 (bunches 28,29,31,32 cleaned);

 eewee » Due to the synchronous phase transient
"0 5 10 15 20 25 30 35

Bunch numoer amplitude detection is imperfect, here we
re-center the detector.
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» Demonstrated bunch-by-bunch feedback in all three planes;
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Feedback

Demonstrated bunch-by-bunch feedback in all three planes;
The beam is currently transversely stable at 400 mA;

Transverse observations, both time and frequency domain, are consistent
with high chromaticity in X and Y; Summary

Mode 21 in the vertical plane oscillates at 0.5 um steady-state amplitude,
observation to be confirmed;

Strong longitudinal instabilities are seen above 3.6 mA at 1.51 GeV;




S u m m ary Feedback

v

Demonstrated bunch-by-bunch feedback in all three planes;
The beam is currently transversely stable at 400 mA;

Transverse observations, both time and frequency domain, are consistent
with high chromaticity in X and Y; Summary

Mode 21 in the vertical plane oscillates at 0.5 um steady-state amplitude,
observation to be confirmed;

Strong longitudinal instabilities are seen above 3.6 mA at 1.51 GeV;

Bunch cleaning was demonstrated at the injection energy, 35 W is
sufficient.
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