Bunch-by-bunch Feedback Studies at SPEAR3

Jeff Corbett1, Don Martin1, James Safranek1, Jim Sebek1, Dmitry Teytelman2, et. al.

1SSRL, Menlo Park, CA, USA
2Dimtel, Inc., San Jose, CA, USA

July 2, 2010
Outline

1 System overview
 - Introduction
 - Operating experience
 - SPEAR3 setup

2 Measurements
 - Calibration
 - Open-loop Measurements
 - Closed-loop Measurements
 - High Current Studies
iGp Highlights

- A 500+ MHz processing channel.
- Finite Impulse Response (FIR) bunch-by-bunch filtering for feedback.
- Control and diagnostics via EPICS soft IOC on Linux.
- External triggers, fiducial synchronization, low-speed ADCs/DACs, general-purpose digital I/O.
Outline

1. System overview
 - Introduction
 - Operating experience
 - SPEAR3 setup

2. Measurements
 - Calibration
 - Open-loop Measurements
 - Closed-loop Measurements
 - High Current Studies
Commissioned systems

- **DAΦNE**: 4 systems, transverse;
- **ALS**: 1 system, longitudinal;
- **Photon Factory**: 3 systems, longitudinal and transverse;
- **Duke SR-FEL**: 2 systems, longitudinal and transverse;
- **CesrTA**: 3 systems, longitudinal and transverse;
- **BEPC-II**: 2 systems, longitudinal;
- **TLS**: 1 system, transverse;

Demonstrated in DELTA, ELSA, ANKA, MLS, KEKB.
Installed Units and Tests

Commissioned systems

<table>
<thead>
<tr>
<th>Facility</th>
<th>Number</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAΦNE</td>
<td>4</td>
<td>systems, transverse;</td>
</tr>
<tr>
<td>ALS</td>
<td>1</td>
<td>system, longitudinal;</td>
</tr>
<tr>
<td>Photon Factory</td>
<td>3</td>
<td>systems, longitudinal and transverse;</td>
</tr>
<tr>
<td>Duke SR-FEL</td>
<td>2</td>
<td>systems, longitudinal and transverse;</td>
</tr>
<tr>
<td>CesrTA</td>
<td>3</td>
<td>systems, longitudinal and transverse;</td>
</tr>
<tr>
<td>BEPC-II</td>
<td>2</td>
<td>systems, longitudinal;</td>
</tr>
<tr>
<td>TLS</td>
<td>1</td>
<td>system, transverse;</td>
</tr>
</tbody>
</table>

Demonstrated in DELTA, ELSA, ANKA, MLS, KEKB.
Outline

1. System overview
 - Introduction
 - Operating experience
 - SPEAR3 setup

2. Measurements
 - Calibration
 - Open-loop Measurements
 - Closed-loop Measurements
 - High Current Studies
Experimental Setup

- Three elements:
 - Front-end;
 - Baseband DSP;
 - Back-end.
- Modified ENI 525LA amplifier (25 W, 0.7-350 MHz);
- Tune excitation striplines;
- Passive front-end computes the difference of upper and lower buttons.
Experimental Setup

- Three elements:
 - Front-end;
 - Baseband DSP;
 - Back-end.
- Modified ENI 525LA amplifier (25 W, 0.7-350 MHz);
- Tune excitation striplines;
- Passive front-end computes the difference of upper and lower buttons.
June 28, 2010
- Started hardware setup and parasitic timing one hour before the shift;
- At 5:55pm we completed the timing and captured a few parasitic data sets;
- Around 6:30pm we connected the power amplifier and started back-end timing;
- Loop closed at 8pm;
- Made a number of grow/damp measurements at 200 mA, explored chromaticity dependence.

June 29, 2010
- Continued the measurements during high-current studies (400–450 mA);
- Stabilized the beam in both vertical and horizontal planes;
- Calibrated front-end sensitivity.
Experimental Program

- June 28, 2010
 - Started hardware setup and parasitic timing one hour before the shift;
 - At 5:55pm we completed the timing and captured a few parasitic data sets;
 - Around 6:30pm we connected the power amplifier and started back-end timing;
 - Loop closed at 8pm;
 - Made a number of grow/damp measurements at 200 mA, explored chromaticity dependence.

- June 29, 2010
 - Continued the measurements during high-current studies (400–450 mA);
 - Stabilized the beam in both vertical and horizontal planes;
 - Calibrated front-end sensitivity.
Outline

1. System overview
 - Introduction
 - Operating experience
 - SPEAR3 setup

2. Measurements
 - Calibration
 - Open-loop Measurements
 - Closed-loop Measurements
 - High Current Studies
Front-end Calibration

- Set up orbit bumps near the feedback BPM;
- ADC signal for bunch n is $\nu_n = g_{fe} \times y_n \times i_n$;
- Computed front-end gain of 71.8 counts/mm/mA.
Outline

1 System overview
 • Introduction
 • Operating experience
 • SPEAR3 setup

2 Measurements
 • Calibration
 • Open-loop Measurements
 • Closed-loop Measurements
 • High Current Studies
Single Bunch Train

- First open-loop data set taken at 18:00;
- Bunches 1–280 and 326 are filled;
- Vertical coupled-bunch oscillations are seen;
- Oscillation amplitude rises along the bunch train;
- Several peaks in the modal spectrum, centered at 18 and 41 MHz.
Single Bunch Train

- First open-loop data set taken at 18:00;
- Bunches 1–280 and 326 are filled;
- Vertical coupled-bunch oscillations are seen;
- Oscillation amplitude rises along the bunch train;
- Several peaks in the modal spectrum, centered at 18 and 41 MHz.
Same fill pattern, longer (120 ms) data set;

- Amplitudes of modes centered at 18 MHz (mode 358 or -14) are beating at roughly 25 Hz;
- Modal spectrum is the same as in the short set.
Same fill pattern, longer (120 ms) data set;

Amplitudes of modes centered at 18 MHz (mode 358 or -14) are beating at roughly 25 Hz;

Modal spectrum is the same as in the short set.
Injection Transients

- 120 ms record acquired during injection;
- Amplitude of mode 0 (all bunches move in phase) shows injection transients;
- Can extract information on injection bump closure from such measurements.
Outline

1. System overview
 - Introduction
 - Operating experience
 - SPEAR3 setup

2. Measurements
 - Calibration
 - Open-loop Measurements
 - Closed-loop Measurements
 - High Current Studies
Waveform Panel

- Updates at 1 Hz
- Uses data from all bunches over many turns.
- Four waveforms:
 - Mean;
 - RMS;
 - Bunch with largest RMS;
 - Averaged spectrum of all bunches.
System overview

Measurements

Summary

Waveform Panel

- Updates at 1 Hz
- Uses data from all bunches over many turns.
- Four waveforms:
 - Mean;
 - RMS;
 - Bunch with largest RMS;
 - Averaged spectrum of all bunches.
Waveform Panel

- Updates at 1 Hz
- Uses data from all bunches over many turns.
- Four waveforms:
 - Mean;
 - RMS;
 - Bunch with largest RMS;
 - Averaged spectrum of all bunches.
Waveform Panel

- Updates at 1 Hz
- Uses data from all bunches over many turns.
- Four waveforms:
 - Mean;
 - RMS;
 - Bunch with largest RMS;
 - Averaged spectrum of all bunches.
Drive/damp measurement;
Feedback is positive for first 450 μs, then negative;
Clearly exciting the beam;
Large betatron line in the spectrum at 223.7 kHz
Grow/Damp Measurement

- Grow/damp measurement at 200 mA;
- Very good damping of low-frequency modes;
- Feedback somewhat reactive — tune shift of 120 Hz between open and closed-loop;
- Growth rate of 0.22 ms^{-1}, damping rate of 1.8 ms^{-1}.

SPEAR3:jun2810/210354; Io=199.5mA, Dsamp=1, ShflGain=4, Nbuns=372,
At Fs: G1=27.0558, G2=0, Ph1=−14.953, Ph2=0, Brkpts=10000, Calib=0.07161.
Grow/Damp Measurement

- Grow/damp measurement at 200 mA;
- Very good damping of low-frequency modes;
- Feedback somewhat reactive — tune shift of 120 Hz between open and closed-loop;
- Growth rate of 0.22 ms^{-1}, damping rate of 1.8 ms^{-1}.
Closed-loop Motion vs. Feedback Gain

- **Open-loop measurement:**
- Feedback on — damping 17 modes;
- Increase the gain — 15 more modes are damped;
- Double the gain — little change;
- Stripline bandwidth is around 20 MHz;
- With proper setup we can roughly double the control range.
Closed-loop Motion vs. Feedback Gain

- Open-loop measurement;
- Feedback on — damping 17 modes;
- Increase the gain — 15 more modes are damped;
- Double the gain — little change;
- Stripline bandwidth is around 20 MHz;
- With proper setup we can roughly double the control range.
Open-loop measurement;

Feedback on — damping 17 modes;

Increase the gain — 15 more modes are damped;

Double the gain — little change;

Stripline bandwidth is around 20 MHz;

With proper setup we can roughly double the control range.
Closed-loop Motion vs. Feedback Gain

- Open-loop measurement;
- Feedback on — damping 17 modes;
- Increase the gain — 15 more modes are damped;
- Double the gain — little change;
- Stripline bandwidth is around 20 MHz;
- With proper setup we can roughly double the control range.
Closed-loop Motion vs. Feedback Gain

- Open-loop measurement;
- Feedback on — damping 17 modes;
- Increase the gain — 15 more modes are damped;
- Double the gain — little change;
- Stripline bandwidth is around 20 MHz;
- With proper setup we can roughly double the control range.
Closed-loop Motion vs. Feedback Gain

- Open-loop measurement;
- Feedback on — damping 17 modes;
- Increase the gain — 15 more modes are damped;
- Double the gain — little change;
- Stripline bandwidth is around 20 MHz;
- With proper setup we can roughly double the control range.
Growth Rates vs. Chromaticity

- Measured mode 359 growth rates vs. chromaticity;
- Clear drop with increased chromaticity, as expected.
Growth Rates vs. Chromaticity

- Measured mode 359 growth rates vs. chromaticity;
- Clear drop with increased chromaticity, as expected.
Outline

1. System overview
 - Introduction
 - Operating experience
 - SPEAR3 setup

2. Measurements
 - Calibration
 - Open-loop Measurements
 - Closed-loop Measurements
 - High Current Studies
Horizontal Instabilities

- **Open-loop measurement:** horizontal plane;
- **Mode -1** — typical resistive wall motion;
- **Vertical plane** is dominated by mode 354 (-18).
Horizontal Instabilities

- Open-loop measurement: horizontal plane;
- Mode -1 — typical resistive wall motion;
- Vertical plane is dominated by mode 354 (-18).
Horizontal Instabilities

- Open-loop measurement: horizontal plane;
- Mode -1 — typical resistive wall motion;
- Vertical plane is dominated by mode 354 (-18).
Dual-Band Filter

- Created a dual-band filter with negative feedback response in both horizontal and vertical planes;
- Matlab tool generates filter coefficients matching desired gains and phases at the two betatron tunes;
- Fully suppressed horizontal motion.
Created a dual-band filter with negative feedback response in both horizontal and vertical planes;

Matlab tool generates filter coefficients matching desired gains and phases at the two betatron tunes;

Fully suppressed horizontal motion.
Created a dual-band filter with negative feedback response in both horizontal and vertical planes;

Matlab tool generates filter coefficients matching desired gains and phases at the two betatron tunes;

Fully suppressed horizontal motion.
Vertical Grow/Damp

- Six trains of 47 bunches separated by 15 bunch gaps;
- Open-loop amplitudes reach 35 μm;
- Non-exponential growth — consistent with smaller fill-pattern gaps.
Vertical Grow/Damp

- Six trains of 47 bunches separated by 15 bunch gaps;
- Open-loop amplitudes reach 35 µm;
- Non-exponential growth — consistent with smaller fill-pattern gaps.
Six trains of 47 bunches separated by 15 bunch gaps;

Open-loop amplitudes reach 35 μm;

Non-exponential growth — consistent with smaller fill-pattern gaps.
We have successfully demonstrated feedback control of transverse coupled bunch instabilities in SPEAR3.

- There is strong evidence of ion-driven instabilities in the vertical plane at 200 mA and above;
- Resistive wall instabilities in the horizontal plane show up around 450 mA;
- We have demonstrated diagnostic capabilities of the iGp and correlated the measurements with existing instrumentation;
- Further measurements would benefit from better striplines and amplifiers.
We have successfully demonstrated feedback control of transverse coupled bunch instabilities in SPEAR3.

There is strong evidence of ion-driven instabilities in the vertical plane at 200 mA and above;

Resistive wall instabilities in the horizontal plane show up around 450 mA;

We have demonstrated diagnostic capabilities of the iGp and correlated the measurements with existing instrumentation;

Further measurements would benefit from better striplines and amplifiers.
Summary

- We have successfully demonstrated feedback control of transverse coupled bunch instabilities in SPEAR3.
- There is strong evidence of ion-driven instabilities in the vertical plane at 200 mA and above;
- Resistive wall instabilities in the horizontal plane show up around 450 mA;
- We have demonstrated diagnostic capabilities of the iGp and correlated the measurements with existing instrumentation;
- Further measurements would benefit from better striplines and amplifiers.
Summary

- We have successfully demonstrated feedback control of transverse coupled bunch instabilities in SPEAR3.
- There is strong evidence of ion-driven instabilities in the vertical plane at 200 mA and above;
- Resistive wall instabilities in the horizontal plane show up around 450 mA;
- We have demonstrated diagnostic capabilities of the iGp and correlated the measurements with existing instrumentation;
- Further measurements would benefit from better striplines and amplifiers.
We have successfully demonstrated feedback control of transverse coupled bunch instabilities in SPEAR3.

There is strong evidence of ion-driven instabilities in the vertical plane at 200 mA and above;

Resistive wall instabilities in the horizontal plane show up around 450 mA;

We have demonstrated diagnostic capabilities of the iGp and correlated the measurements with existing instrumentation;

Further measurements would benefit from better striplines and amplifiers.