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Commissioning Progress

Commissioning Progress

Started on Tuesday (April 6) from longitudinal feedback
work;

Beam stabilized in 20 minutes;

Later used low beam currents to time the system;

Training session: longitudinal feedback setup;

Continued after midnight (April 7) with transverse feedback;
In the evening - further transverse studies;

On Thursday (April 8) added the second AR 250A250A
amplifier;

Demonstrated bunch cleaning (with an orbit bump);
Cleaned the fill pattern to one bunch, used for timing

optimization. @m



Longitudinal Feedback

Longitudinal Timing

Back-end timing sweep, 2010-04-07
T T T T T

@ Longitudinal back-end
timing sweep;

@ Fine timing, 100 ps steps;

@ Adjust DAC delay, record
bunch RMS.

RMS (ADC counts)
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Longitudinal Feedback

Longitudinal Grow/Damp

2) Osc. Envelopes in Time Domain b) Evolution of Modes.
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Longitudinal Feedback

Longitudinal Grow/Damp

2) Osc. Envelopes in Time Domain b) Evolution of Modes.
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Frequency (kHz)

2) Osc. Envelopes in Time Domain

b) Evolution of Modes.

Frequency (kHz)
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@ Grow/damp transient at
200 mA;

@ Low gain configuration;

@ Damping rate is twice as fast
as the growth rate;
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Longitudinal Feedback

Longitudinal Grow/Damp

2) Osc. Envelopes in Time Domain b) Evolution of Modes.

: 2
0 gy 10 100 10

T S S, @ Grow/damp transient at
s © Oscilaton fregs (pre-brkp) d) Growth Rates (pre-brkpt) 200 m A,

°

g

® °

o @ Low gain configuration;
@ Damping rate is twice as fast

cy (kHz)

Rate (1/ms)

Frequer

RS % e w % @ @ w as the growth rate;
Mode No. Mode No.
st &) Oscillation fregs (post-brkpt) f) Growth Rates (post-brkpt) ° Roughly 30 HZ tune Shift from
.
g o the feedback.
19 =02
04
% o s 10 120 © e @ 10 1
Mode No. Modeg No.

(



Longitudinal Feedback

Longitudinal Damping Versus Gain

ot @ Plot feedback damping
(difference between growth
and damping rates) vs.
feedback gain;

@ Linear increase up to the
gain of 3;

' R . @ Very high gains lead to

P reduced damping:

w? 9 eedbackgan w e Saturation, dynamic

limits.
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Transverse Feedback

Transverse Setup

@ iGp ADC input connected directly
to the BPM hybrid output;

@ Only possible due to wide
(1.3 GHz) bandwidth of the iGp;

@ Front-end timing sweep with a
single bunch;

Transverse front-end timing sweep, 2010-04-08

@ Two peaks around 900 and

] 1350 ps correspond to positive
wctiypy and negative pulses of the
differentiated bunch signal,

@ Set timing at 1370 ps.

0 500



Transverse Feedback

Transverse Filter Design

I T e 16-tap FIR filter;
Xgin 8345; v gein 136 d5 ) Matlab f||ter generator

T Y W\ allows independent control
of gain and phase for X

andY;

1000 T200

X phase ~150.0 deg; Y phase ~0.0 deg
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Transverse Feedback

Transverse Filter Design

I T e 16-tap FIR filter;
Xgin 8345; v gein 136 d5 ) Matlab f||ter generator

T Y W\ allows independent control
of gain and phase for X

andY;
o 100 e 00100 @ Lower X gain is intentional
N ‘ ‘ \ - to balance the two loops.
0 260 4&0 GOL% 800 10‘00 12‘00 @IJm %'U)/
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Transverse Feedback

Transverse Grow/Damps

a) Osc. Envelopes in Time Domain b) Evolution of Modes
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Transverse Feedback

Transverse Grow/Damps

a) Osc. Envelopes in Time Domain b) Evolution of Modes

@ Grow/damp transient at
‘ 200 mA;
T I S, @ Filter bunch signals around
a5 Occlation egs pro-brkgy d) Growth Rates (pre-brkpt) the Vertical tu ne;
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Transverse Feedback

Transverse Grow/Damps

&) Osc. Envelopes in Time Domain b) Evolution of Modes

@ Grow/damp transient at
200 mA;

B 0 ey w0 e @ Filter bunch signals around
©) Exp. Fit o Modes (pre-brkpt) , ) Growth Rates (pre-bript) the VertiCaI tu ne;

@ Extract growth and damping
= rates, modes -4 to -1 active;

< e . _
\\\1\%& s @ Filter bunch signals around

Time (ms) MO:’ v
o No.

o oo o the horizontal tune;

@ Slower growth rates, similar
i RN modal spectrum.
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Transverse Feedback

Vertical Growth and Damping Rates Vs. Beam Current

Vertical growth (0) and damping (+) rates, 2010-04-07
o
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T2000%8 oo o @ No change in growth rate
: vs. beam current;
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Transverse Feedback

Vertical Growth and Damping Rates Vs. Beam Current

Vertical growth (0) and damping (+) rates, 2010-04-07
o
°° ® o o

[57°00%8  ©%0 % @ No change in growth rate
| | vS. beam current;

T 4 ] @ Typical for beam-ion

o 00

instabilities;

ot e . . | @ Damping rates are much
T s o] faster than the growth

rates.

Rate
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Beam current (mA)
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Tune Monitoring

Beam Spectrum and Tune Monitoring

@ When feedback loop is
closed, bunch spectra exhibit
L T — o notches in the noise floor;
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Beam Spectrum and Tune Monitoring

@ When feedback loop is
closed, bunch spectra exhibit
L T == notches in the noise floor;
st s A0 m @ These notches are located at
3%@ wwﬁg | the peaks of the beam transfer
function, i.e. betatron tunes;




Tune Monitoring

Beam Spectrum and Tune Monitoring

@ When feedback loop is
closed, bunch spectra exhibit
notches in the noise floor;

@ These notches are located at
the peaks of the beam transfer
function, i.e. betatron tunes;

@ Depth of the notch is related
to the feedback loop gain;




Tune Monitoring

Beam Spectrum and Tune Monitoring

@ When feedback loop is
closed, bunch spectra exhibit
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Tune Monitoring

Beam Spectrum and Tune Monitoring

0

100 120 140

@ When feedback loop is
closed, bunch spectra exhibit
notches in the noise floor;

@ These notches are located at
the peaks of the beam transfer
function, i.e. betatron tunes;

@ Depth of the notch is related
to the feedback loop gain;

@ Search marker automatically
reads out the tune at 1 Hz;

@ Can fit individual bunch
signals off-line to extract

)
bunch-by-bunch tunes. @mm gﬁ/



Bunch Cleaning

Bunch Cleaning

@ iGp has integrated
functionality for bunch
— e — cleaning;
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Bunch Cleaning

Bunch Cleaning

@ iGp has integrated
functionality for bunch

— B cleaning;
P S Y
i, WWW @ We turn off the feedback for
e = T bunches to be cleaned and
— o = apply excitation at the
- ajg%m [ betatron (vertical) tune;
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Bunch Cleaning

Bunch Cleaning

@ iGp has integrated
functionality for bunch
cleaning;

@ We turn off the feedback for
bunches to be cleaned and
apply excitation at the
betatron (vertical) tune;

@ Cleaned out bunches 65-67,

,.,n,.m ::jn: N 08 655 ,.;.l:,:,.,‘..;.:,:, :!:ﬂfmu.saa 100, 1 10;
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@ iGp has integrated
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cleaning;

@ We turn off the feedback for
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betatron (vertical) tune;
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pattern 10:10:200;




Bunch Cleaning

Bunch Cleaning

@ iGp has integrated
functionality for bunch
cleaning;

@ We turn off the feedback for
bunches to be cleaned and
apply excitation at the

< betatron (vertical) tune;

- @ Cleaned out bunches 6567,
100, 110;

@ Additionally cleaned in the
pattern 10:10:200;

@ Cleaned out everything, left

one bunch. (O:mm %ﬁ/

Mean (ADC counts)
&

o 50 100 150 200
Bunch number
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@ Successfully demonstrated bunch-by-bunch control in all
three planes;
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Summary

Summary

@ Successfully demonstrated bunch-by-bunch control in all
three planes;

@ iGp feedback is commissioned, needs permanent
installation cleanup.

@ Longitudinal SSB modulator needs some attention (large
carrier feedthrough).

@ | would like to thank everyone for this very productive
period!!!
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