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Abstract
Precise calibration of the cavity phase signals is necessary

for the operation of any particle accelerator. For many sys-
tems this requires human in the loop adjustments based on
measurements of the beam parameters downstream. Some
recent work has developed a scheme for the calibration of the
cavity phase using beam measurements and beam-loading
however this scheme is still a multi-step process that requires
heavy automation or human in the loop. In this paper we
analyze a new scheme that uses only RF signals reacting
to beam-loading to calculate the phase of the beam relative
to the cavity. This technique could be used in slow control
loops to provide real-time adjustment of the cavity phase
calibration without human intervention thereby increasing
the stability and reliability of the accelerator.

INTRODUCTION
For modern accelerators precise control of the the am-

plitude and phase of RF cavities is necessary in order to
meet the machine performance requirements. The state of
the art in LLRF control is capable of achieving local stabil-
ity in the amplitude and phase of RF cavities to better than
10−4 [1], however this does not guarantee that the cavity
amplitude and phase are properly calibrated to the energy
gain and synchronous phase of the beam respectively. Ad-
ditionally sources of drift such as temperature, humidity,
and up-stream beam motion, can shift the calibration of the
cavity over time and lead to unwanted beam parameters in
the accelerator. While there are many calibration schemes in
use [2–8], such as time-of-flight, spectrometer, or analysis
of the beam-loading signals in the RF cavity, all of these
methods currently require a human in the loop and machine
time in order to update these calibrations and compensate
for drift. Therefore the development of an automatic cali-
bration scheme that can be done on the fly would be highly
beneficial to machine operation.
In this paper we will describe our method for measuring

the beam phase relative to the RF cavity and show proof-of-
priniciple results both with an ideal beam-like disturbance
and with a real beam disturbance. We show that for an ideal
beam we can calculate the phase of the disturbance relative
to the RF to within 0.5 degrees. However, when applied with
real beam we have large systematic errors that prohibit the
use of this technique on these particular cavities. The source
of the error is still unknown but it could be attributed to low-
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beta effects, parasitic modes, or other non-ideal properties
of this particular beam-cavity interaction.

THEORY
The analysis in this section will follow a block diagram

model of the RF control system, Figure 1, which has been
shown to compare well with measurements of the RF sys-
tem. For this model we consider a system with in-phase
and quadrature control loops that are independent. Because
these two loops are identical we will only analyze one in
detail. When using this model for computing the beam-
loading phase it is important to understand our underlying
assumptions:

• The amplifiers are in the linear regime

• The loop phase and gain are calibrated

• Disturbances other than beam-loading are relatively
small or slow compared with beam-loading.

During this section we will translate between frequency and
time domain, functions f (t) in the frequency domain will
be noted by f̂ (s).

V̂ff V̂beam

V̂set T̂cont(s) T̂RF(s) T̂cav(s) V̂cav

−e−st0

Figure 1: Base-band model of LLRF the controller

Using block diagram analysis and the assumptions noted
above, we derive the relationship between the cavity volt-
age Vcav and the various inputs to the RF control system,
Equation 1.

V̂cav =
(
V̂setT̂RF(s)T̂cont(s) + V̂ffT̂RF(s) + V̂beam

)
...(

T̂cav(s)
1 + T̂cavT̂RF(s)T̂cont(s)e−st0

)
(1)

If we assume thatVset(t) andVff(t) are not changing during
the beam-loading transient and that the cavity voltage is at
steady state before the beam arrived, then we can simply sub-
tract off their associated contributions to the cavity field at a
given time during the beam-loading transient, for example by
sampling the cavity field before the beam arrives V(0). Next
we will use the result from Equation 1 to calculate the in-
phase and quadrature components of the beam-induced cav-
ity signal. At this point it is convenient to express the transfer
function seen by the beam as an arbitrary function F̂(s). We
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will show later that the details of this transfer function are
irrelevant to calculating the beam-phase relative to the RF
cavity. This gives the relationship between the cavity voltage
and the beam disturbance as V̂(s) = V(0)/s + V̂beam(s)F̂(s).
Next we convert to time domain to simplify the analysis of
the cavity field signals inside the LLRF system, Equation 2.

Vcav(t) = Vcav(0) +
∫ ∞

−∞
Vbeam(t)F(t − τ)dτ (2)

Next we assume that the variation in the beam voltage
along the beam pulse is small, or that the beam pulse can be
approximated as a top-hat disturbance, Vbeam(t) = V0(u(t) −
u(t − L)), where L is the length of the beam pulse, and
V0 is the magnitude of the beam voltage. Substituting this
representation of the beam voltage into Equation 2 gives
Vcav(t) = Vcav(0) + V0

∫ ∞
−∞(u(t) − u(t − L))F(t − τ)dτ. If

Vbeam has in-phase and quadrature components then the beam
phase is simply, arctan(VQ

0 /V
I

0 ). Now that V0 is outside the
integral we can solve for it directly in terms of the system
transfer function and the cavity voltage,

V I,Q
0 =

V I,Q
cav (t) − V I,Q

cav (0)∫ ∞
−∞(u(t) − u(t − L))F(t − τ)dτ

. (3)

When we compute the cavity phase from the definition given
above, the denominator of Equation 3 will fall out and the
beam phase is represented completely by themeasured cavity
signals,

φbeam = tan−1

(
VQ

cav(t) − VQ
cav(0)

V I
cav(t) − V I

cav(0)

)
. (4)

To improve signal-to-noise it may be desirable to Integrate
the top and bottom of Equation 4 from the start of beam to
some point during the beam pulse.

OVERVIEW OF TEST CAVITY
This algorithm was tested on room temperature bunching

cavities installed at the PIP-II Injector test, Figure 2. These
cavities are quarter wave resonators that operate at 162.5
MHz. These cavities have a loaded quality factor of 5̃000,
an r/Q of 6̃00, an operating voltage between 50 kV and 100
kV and a beam induced voltage of approximately 15 kV. The
LLRF system for these cavities is a base-band I/Q controller
that can operate in both pulsed mode and CW mode. In
pulsed mode there is data acquisition at a rate of 1 MHz.
Testing of this scheme was performed in two stages, the first
was using a beam like disturbance driven from the LLRF
system and the second was using real beam loading signals.
In the next two sections we discuss the setup and results
from these two tests.

IDEAL BEAM-LIKE DISTURBANCE
The first test is to use an ideal beam-like disturbance that

is driven from the LLRF system. This is accomplished by
adding a top-hat profile to the feed-forward table in the cen-
ter of pulse. Then using Equation 4 we calculated the phase

Figure 2: Schematic of the quarter wave bunching cavity
used for testing

of the disturbance relative to the field in the cavity. This
calculated phase was then compared to the set point phase
for the feed-forward disturbance in the LLRF system. Figure
3 shows the difference between the calculated phase from
the cavity signals and the set point in the RF system. Here

Figure 3: Difference between calculated phase of LLRF
disturbance and the set-point phase as a function of set-point
phase

we see fairly good agreement between the calculated distur-
bance phase and the set point phase, but there is a significant
amount of noise in the measurement that is correlated ith the
set-point phase. This is believed to be caused by cross-talk
in the digital processing board. However on average the
error is less than 0.2◦ peak to peak, which is an encouraging
result for this scheme.

BEAM LOADING TESTS
Next we attempted to apply this technique to real beam

loading signals. For this study we scanned the reference
phase of the RF system, effectively scanning the phase of



the beam relative to the cavity, and then used the beam load-
ing signals to calculate the beam phase relative to the RF
system. Because we are only looking at relative phase we
subtracted out the linear relationship between the calculated
beam phase and the reference phase to understand how well
this technique will work when applied to real beam loading
signals. Here we can see that while we have relatively low

Figure 4: Residual phase error from calculated beam phase
using equation 4 as a function of reference phase

statistical errors in the beam phase calculation, there are
significant correlated errors as we scan the reference phase.
After some investigation the source of the correlated errors
is still under discussion. Some possibilities include parasitic
modes being excited by the beam, non-relativistic effects,
or other non-ideal effects in our system. In order to fully
understand these effects, more work is needed. Additionally,
implicit in our calculations is that the beam-loading distur-
bance is sinusoidal with phase. It is possible that this is not
the case for different cavity types.

CONCLUSIONS
In conclusion, we have proposed a method that can in

principle determine the phase of the beam relative to the

RF system which gives the true synchronous phase of the
beam to within 0.5◦. This method could be used in an online
updating scheme that regularly adjusts the calibration of the
cavity to keep the cavity phase calibration relative to the
synchronous phase to within 0.5◦. While testing with beam
showed results that are not ideal, we are encouraged that
this technique applied to other cavities could yield fruitful
results.
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